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Artificial Neural Networks in Precipitation-Stream Flow Modeling

by Matthew DE VRIES

Romelon CHETTY

We investigate the utility of Artificial Neural Networks (ANNs) for short term fore-
casting of stream flow in the Jonkershoek catchment area. We look at the use of
Recurrent Neural Networks, in particular, the Long Short-Term Memory (LSTM)
Network in order to forecast stream flow from a number of input variables related
to precipitation. The LSTM is optimised to predict the stream flow as good as pos-
sible, and has to learn physical principles and laws during the calibration process
purely from the data. The relationship between immediate rainfall and stream flow
is expected to be shown from this model as well as the long term storage of the
catchment area. We ultimately look at describing the effects of a long term drought
and the time after which the stream flow is expected to recover. The work considers
historical data of precipitation measured in millimetres and stream flow measured
in cubic metres from the Jonkershoek catchment area from the year 1940 until 2018.
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Chapter 1

Introduction

The drought in the Western Cape began in 2015 and has resulted in a severe water

shortage in the region, most notably affecting the city of Cape Town. With dam levels

predicted to decline to critically low levels, the city announced plans for "Day Zero",

when if a particular lower limit of water storage was reached, the municipal water

supply would largely be shut off, potentially making Cape Town the first major city

to run out of water (Cassim, 2018). Implementation of water conservation efforts

have taken place across the province in order to avoid "Day Zero". Understanding

how stream flow is likely to be affected by projected changes in precipitation sea-

sonality is crucial in determining the effect of a large drought on dam levels and

how long an area may take to recover. Water is of vital importance to food security

as it directly affects agricultural production. Its scarcity can cause famine in the re-

gion, having massive consequences on health, hunger, education, and poverty of a

country and when in excess, produces life-threatening floods. Water is important

in attaining, not only the hopes for food harvests, but also a sustainable livelihood,

in which agriculture plays a significant role. Proper management of rainwater can

lead to plentiful harvests, but its misuse can be responsible for many epidemics. The

first step in its management is to quantify runoff produced in the area due to rainfall

(Sinha, 2011). Thus, estimation or prediction of stream flow is essential for flood and

drought protection works, water harvesting, power generation and risk control.

Precipitation-stream flow modeling has a long history within the field of hy-

drology with the first attempt to predict discharge from rainfall dating back 170

years (Mulvaney, 1850). Since then, further development of modeling concepts has

taken place by progressively incorporating physically based process understanding

and concepts into the model formulations. These developments are largely driven

by the advancements on computer technology and the availability of data in high

spatial and temporal resolution (Kratzert et al., 2018). However, the development
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of physically based and spatially explicit representations of the hydrological pro-

cess at the catchment scale has come at the price of high computational costs and a

need for specific, and often difficult to obtain, meteorological input data. For this

reason, physically based models are rarely used in operational precipitation-stream

flow forecasting. The high computational costs further limit the application of these

models, especially if uncertainty estimations exists and multiple model runs within

an ensemble forecasting framework are required. Thus, simpler versions of these

physically based or conceptual models are often applied for operational purposes.

Furthermore, fully data-driven approaches such as regression, fuzzy based or artifi-

cial neural networks (ANNs) have been explored in this context.

ANNs are known for their use in nonlinear and complex systems. Due to the

fact that the transformation from rainfall to runoff is believed to be highly nonlin-

ear, spatially distributed, and time variant, ANN rainfall-runoff prediction models

have been used since the early 1990’s (Daniell, 1991; A. H. Halff and Azmoodeh,

1993). Since then, several studies on their applicability to the hydrological process

have been published with new ideas constantly arising. There has been concern

about the application of the feed forward neural network (FFNN), which have pre-

viously been the focused architecture, for time series analysis as any information

about the sequential order of the inputs is lost. Recurrent neural networks (RNNs)

are a different kind of neural network architecture, which have been designed to

understand the sequential nature of the input data. Even though, in some cases,

FFNNs have been shown to perform equally well as RNNs (Carriere, Mohaghegh,

and Gaskar, 1996), it has been found that the number of delayed inputs, which are

provided as driving inputs to the ANN, are a critical hyperparameter (Hsu, Gupta,

and Sorooshian, 1995). However, due to the architecture of the RNN, these models

make this step in creating and searching for the correct number of lags, obsolete.

Furthermore, RNNs have been seen to outperform FFNNs in stream flow prediction

in most cases. One downfall of the simple RNN is its apparent inability to learn long-

term dependencies. A special type of RNN, proposed by Hochreiter and Schmidhu-

ber (1997), known as the "Long Short Term Memory" (LSTM) model, is currently

recognized as the "state of the art" (Donger, 2018) architecture for problems in which

the sequential nature of the data matters. This model has been specifically designed

to overcome the long-term dependency problem associated with the simple RNN,

which may play an important role in catchments with sufficient storage effects eg.
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snow driven catchments.

This project is part of a larger project on seasonality which was collaborated with

the South African Environmental Observation Network (SAEON). The larger project

aims at developing a model linking rainfall to stream flow as well as determining the

relative influence of precipitation versus groundwater release and evapotranspira-

tion on stream flow. Such a model could be used for predicting how stream flow

is likely to be affected by projected changes in precipitation seasonality. The aim

of this project is to investigate the utility of ANNs in predicting stream flow from

precipitation. Additionally, we want to compare the different ANN architectures,

namely the FFNN, RNN, and the LSTM based on their predictive capabilities. We

test our models on the data obtained from SAEON on the Jonkershoek catchment

area, including only rainfall and stream flow as meteorological variables.

This paper is structured in the following way: in Chapter 2, we discuss the dif-

ferent types of models used in the prediction of stream flow as well as the important

contributions made by researchers for stream flow prediction involving regression

and neural network techniques. This is followed by some theoretical considerations

of the project which describes the theory of ANNs and the different topologies used,

in Chapter 3. We will also give a high level translation of the models in the hydro-

logical sense. Chapter 4 describes the data used and any preprocessing techniques

undertaken before model formulation could take place. In Chapter 5, we report and

discuss the results of the different models, finally concluding and exploring scenar-

ios in Chapter 6.
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Chapter 2

Review of Literature

This chapter deals with the important and relevant contributions made by researchers

for stream flow prediction involving both linear regression and artificial neural net-

works. We will briefly introduce the scope of ANNs, then describe some common

rainfall-runoff models used in literature and their characteristics, touching on re-

gression models and onto those ANN models. There is no shortage of studies done

on machine learning techniques and their applications are so wide spread. The re-

view of literature has been grouped under five sub-sections including The Scope of

ANN Modeling, Common Precipitation-Stream Flow Models, Regression Models on

Hydrological Responses and ANN-based Stream Flow Estimation Models.

2.1 Scope of ANN in Hydrology

Forecasting stream flow is of high importance in operational hydrology for reser-

voir operations and risk control. Stream flow is critical to many activities including

the protection of agricultural land, water storage and release, and the designing of

flood and drought protection works (Sinha, 2011). The volume of stream flow is

dependent on several factors, with precipitation being one of great influence. The

other factors include soil moisture, temperature, surrounding flora, and topography

(Grist and Nicholson, 2001).

Early hydrologists calculated surface runoff with limited data and simple com-

putational techniques. The first widely used runoff method was the Rational Method

published by Thomas Mulvaney in 1851, which used rainfall intensity, drainage

area, and a runoff coefficient to determine the peak discharge in a drainage basin

(Sitterson et al., 2017). In more recent studies, the unit hydrograph was used to con-

ceptualize catchment response to heavy rainfall based on a superposition principle.
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The unit hydrograph is a direct hydrograph resulting from one unit of constant in-

tense uniform rainfall occurring over the entire watershed. Now, with more data

available for the verification of these models, they have been found to produce re-

sults with large errors (Kothyari, 1995).

The first computational model for neural networks based on mathematics and

algorithms called threshold logic was created by McCulloch and Pitts (1943). This

model then allowed neural network research to split into two approaches. One fo-

cused on the biological process of the brain, while the other on its application to

artificial intelligence. A renewed interest in neural networks was then triggered due

to Werbos’s (1975) backpropagation algorithms which proved to accelerate the train-

ing of multi-layer networks.

Since the early nineties, artificial neural networks (ANNs) have been success-

fully used in hydrology-related areas such as rainfall-runoff modeling, stream flow

forecasting, ground-water modeling, water quality, water management policy, pre-

cipitation forecasting, hydrologic time series, and reservoir operations (Govindaraju,

2000).

ASCE (2000) described the role of ANNs in hydrology as well as some guidelines

of their uses. ANNs were compared with other modelling philosophies in hydrol-

ogy, presenting the pros and cons. It was found that ANNs are tools for modelling

many of the nonlinear hydrologic processes such as rainfall-runoff, stream flow,

ground water management, water quality simulation and precipitation. A good

physical understanding of the hydrologic process being modelled can help in se-

lecting the input vectors and designing a more efficient neural network.

ANNs are, though, very data intensive and there appears to be little established

methodology on their design and successful implementation. Most ANN studies use

training and testing and a process of trial and error before obtaining a good model.

Rainfall-runoff studies using ANNs provide sound evidence that these models are

capable of learning and extracting the behaviour of the system, when sufficient data

is available. The performance of ANN hydrological models have been frequently

compared to other empirical, physical and statistical models. ANNs have been re-

ported to be superior in performance.
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2.2 Common Stream Flow Prediction Models

A runoff model is a mathematical model which intends to describe the rainfall-

runoff relationship of a rainfall catchment area. Measuring rainfall and runoff for

short time periods is relatively simple and inexpensive. The main question arises

when determining the amount of information which could be gained about a sys-

tem by just studying rainfall and runoff data from a series of rainfall events. If a

time series of a sufficient amount of time exists, one can calculate yearly runoff coef-

ficients describing the general reaction of the catchment to rainfall. It is also possible

to get a first impression of the rainfall runoff process by determining the different pa-

rameters describing the hydrograph and its relationship to input rainfall (eg. peak

flow rates, lag times, response times) (Beven, 2012). The calculation of runoff of

single events adds information on catchment response. The changes from event to

event or from season to season are then of special interest which will serve to give

information of hydrological functioning of a catchment area under different events

or seasons (Blume, Zehe, and Bronstert, 2010).

Hydrology can be defined as the scientific studies of waters on earth, especially

related to the effect of precipitation to the occurrence and characteristics of water

in streams or the stream flow (Marshall, 2013). Most hydrological systems are be-

lieved to be highly nonlinear. Even if they are assumed to be linear, this assump-

tion is restricted to within some specified range of conditions only (Zbigniew and

Napoirkowski, 2009). These models are further complicated by an uncertainty in

parameter estimates, as well as a high degree of spatial and temporal variability.

Models which are currently being used by hydrologists can be grouped into three

separate categories: conceptual-based models, physicality-based models, and em-

pirical models. The empirical models or the data-driven models use nonlinear statis-

tical relationships between inputs and outputs. For simple rainfall-runoff regression

models, inputs are rainfall as well as the historical runoff, with outputs of runoff at

a specific location. This simple model can be shown in the function:

Q = f (X, Y) (2.1)

Where Q is the runoff, X, Y are the input datasets of rainfall and historical runoff.

Empirical models treat hydrological systems as a "black-box", meaning that not

much is known about the internal processes controlling the determination of runoff
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results. As in machine learning, the function which transforms rainfall to runoff

is usually unknown (Sitterson et al., 2017). Empirical runoff models are best used

when other outputs are not needed; for example: the distribution of runoff values

between upstream and downstream areas cannot be calculated with this model type

(Sitterson et al., 2017).

In these data-driven models, very few parameters are needed, making these

models easy and efficient to use. They lack parameters of any physical significance

due to the fact that there are no real watershed components within the model. One

downfall of the empirical process is that it may lead to different conclusions than

accepted theoretical analysis would suggest (Beven, 2012). However, this could sim-

ply mean that there are multiple ways of finding an answer and not simply that the

model is incorrect. Empirical models have benefits of simplicity of implementation,

faster computational times, and cost effectiveness. Machine learning techniques fall

under the empirical models category which use data-driven approaches such as ar-

tificial neural networks which train themselves to learn behaviours of the rainfall-

runoff relationship. Machine learning used in ANNs calculates output predictions

based on statistics learned from historical data in the training period. Machine learn-

ing algorithms can be over trained on specific inputs which cause the model to lose

its ability to discern one catchment from another or to perform well on unseen data

(Dawson and Wilby, 2001).

Conceptual models look at interpreting rainfall-runoff processes by connecting

simplified components in the overall hydrological processes. These models are based

on catchment storages and simplified equations of the physical hydrological process,

which provide a conceptual idea of the behaviors in a catchment area (Devia, Pa, and

Sa, 2015). They represent the water balance equation with the conversion from pre-

cipitation to runoff, groundwater and evaportranspiration, as shown in Figure 2.1

below. Every component in this water balance equation is estimated by precipita-

tion input data through mathematical equations. The general governing equations

for conceptual models are versions of the water balance equation as shown below:

∂S
∂t

= P + ET −Qs ± GW, (2.2)

where ∂S
∂t is the change in reservoir storage, P is precipitation, ET is evaportran-

spiration, Qs is surface runoff, and GW is groundwater. Figure 2.1 represents an
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example of a conceptual hydrological model viz. the Hydrological Simulation Pro-

gram—FORTRAN (HSPF) model.

FIGURE 2.1: HSPF conceptual hydrological model [Source: Johnson
et al. (2003)]

Conceptual models tend to vary in complexity depending on how sophisticated

the balancing equations used to represent the hydrological are. Conceptual mod-

els have become more popular in the hydrological modeling community due to the

fact that they are easy to use and calibrate. With some, there is a likelihood that a

previously calibrated model can be used for different catchment areas (Vaze et al.,

2011).

Physical models, also known as mechanistic or process-based models, are based

on the general understanding of physics related to the hydrological process. These

general physical laws used include the conservation of mass and energy, momen-

tum, kinematics, and water balance equations. An example of a physical based

model is shown below in Figure 2.2, which shows the physical movement of water

through each Triangular Irregular Network via overland flow, evapotranspiration,

infiltration, recharge, and groundwater.
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FIGURE 2.2: The model structure of the physically-based Penn State
Integrated Hydrologic Modeling (PIHM) system. [Source: Qu (2004)]

What separates a physical model from other models is that it has a logical struc-

ture which is similar to the real world system of a hydrological process. This is the

greatest strength of a physical model as it connects model parameters and physical

catchment characteristics which make it more realistic. This leads to a large num-

ber of physical characteristics needed to calibrate the model. A downfall to physical

models is that they are site, or catchment specific and may not be used on different

catchments as their physicality may be drastically different. Most physical models

give a three dimensional view of the hydrological process. The different characteris-

tics of the three models are summarised in Table 2.1.

Empirical Models Conceptual Models Physical Models
Data based/metric or black box
model

Parametric or grey box model Mechanistic or white box model

Involve mathematical equations,
derive value from available time
series

Based on modeling of reservoirs
and Include semi empirical equa-
tions with a physical basis.

Based on spatial distribution,
Evaluation of parameters describ-
ing physical characteristics

Little consideration of features
and processes of system

Parameters are derived from field
data and calibration.

Require data about initial state of
model and morphology of catch-
ment

High predictive power, low ex-
planatory depth

Simple and can be easily imple-
mented in computer code.

Complex model. Require human
expertise and computation capa-
bility.

Can be generated to other catch-
ments

Require large hydrological and
meteorological data

Suffer from scale related problems

ANN, unit hydrograph, other sta-
tistical models

HBV model, TOPMODEL SHE or MIKESHE model, SWAT

Valid within the boundary of
given domain

Calibration involves curve fitting
make difficult physical interpreta-
tion

Valid for wide range of situations.

TABLE 2.1: Table showing characteristics of the three types of hydro-
logical models. [Adapted from Devia, Pa, and Sa (2015)]
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Although there seemed to be a trend of empirical models evolving to concep-

tual models which eventually evolved to physical models, there has been a renewed

interest in the empirical models due to the increase in computational power, data

availability and new techniques used (Kratzert et al., 2018; Asati and Rathore, 2012;

Pan et al., 2008). The benefits of these empirical models is their re-usability across

catchments and simplicity of inputs, with most requiring only rainfall data and his-

torical runoff.

Rockwood (1958) developed a Stream-flow Synthesis and Reservoir Regulation

(SSARR) model, which was used for the operation of water control projects in the

Columbia River basin. Runoff was estimated as a percentage of rainfall which is

based on soil moisture status and rain intensity.

Linsley and Crawford (1960) developed a general purpose model which aimed

at simulating daily stream flow from rainfall using a unit hydrograph and recession

functions. The improved version of this model included parameters of soil moisture,

flow routing techniques and evaportranspiration.

Boughton (1968) developed a model which aimed at estimating the runoff in dry

regions of a catchment by using daily rainfall and evaporation data. Runoff was

produced when moisture supply was in excess of the three soil moisture storages

which included upper soil, drainage storage, and subsoil storage levels. The model

was modified for British catchments and was represented by 14 parameters.

Gorgens (1983) used a seven-year data set derived from three well-instrumented

semi-acid research catchments in South Africa, to test the performance of four con-

ceptual rainfall-runoff models of differing degrees of complexity. To evaluate the

adequacy of the models for use in water resources studies where storage-yield de-

terminations are based on monthly data, a comprehensive set of statistical tests that

measured the ability of the models to reproduce the observed monthly flow series,

were executed. The results indicate that the relatively simple model based on daily

input performed as satisfactory, and in some ways even better than the two complex

models which operate on hourly input.

Wang and Yung (1986) developed a model using the Box-Jenkins approach. Their

model used six parameters to simulate runoff from small catchment areas. Different

methods were used to estimate model parameters and the results were compared
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with the original hydrograph. It was found that quadratic programming and least

square techniques give better results than the other methods observed.

Jakeman, Littlewood, and Whitehead (1993) developed a method for rainfall-

runoff modeling by assessing response characteristics of stream flow. Unit hydro-

graph techniques were used to model rainfall-runoff on a daily basis. By using daily

data, this model was able to separate the fast and slow flow components over an

annual period.

Agarwal (2002) utilized genetic algorithms to develop a nonlinear dynamic model

for predicting runoff and sediment yield from Vamsadhara catchment in India. The

catchment had a strong memory for both runoff and sediment yield and maximum

three previous days’ successive events influenced the current output of the catch-

ment. The non-linear rainfall-runoff sediment yield prediction model performed

better than the linear model.

Schulze and Pike (2004) developed and evaluated the Agricultural Catchment

Research Unit (ACRU) agrohydrological modelling system in South African catch-

ments. They recommended the development of a more comprehensive, user-friendly

and seamlessly operating Hydrological Decision Support Framework (HDSF) in which

models are linked with a common, flexible and extensible database. They suggested

that these models should be fully integrated with a graphical information system

(GIS) to ensure maximum flexibility in model configurations and model interroga-

tions by water resource managers for planning and scenarios analyses.

There are many rainfall-runoff processes which are still not well understood and

are thus difficult to incorporate into a modeling scheme. One example is channel

transmission losses, a critical runoff component in semiarid flow regimes. Another,

in the context of Southern Africa, which is dominated by fractured-rock aquifers, is

the nature of surface-groundwater interactions (Hughes, 2004).

Most of the models developed in South Africa have leaned towards a higher de-

gree of complexity, including a large number of parameters (Kapangaziwiri, 2010;

Mahe et al., 2008; Sawunyama and Hughes, 2010; Gorgens, 1983). This is primar-

ily due to the tradition of attempting to represent the process of runoff generation

within models, rather than opting for a more simple empirical model with fewer

parameters to be used across catchments. It is thus important to give a different per-

spective on hydrological modeling in South Africa, from a data-driven background.
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2.3 Regression Models on Hydrological Response

In statistical modeling, regression analysis is a set of statistical processes for esti-

mating the relationships among variables. The focus of regression analysis is on the

relationship between the dependent (Y) variable and the independent (X) variables.

In general, regression analysis estimates the conditional expectation of the depen-

dent variable given the independent variables. Regression models are frequently

used in hydrology, and their correct application as well as the optimal use of the

information they yield have been an area of much discussion in the field (Valdes,

Vicens, and Rodriguez-Iturbe, 1979). As a common example, the mean and variance

of annual flows is related to the physiographic and meteorological characteristics of

their respective basins by means of a regression equation. This equation is then used

in a number of ways by the hydrologist, such as a source of regional information.

However, in most applications the commonly made hypothesis of a scalar covari-

ance matrix of the disturbances is not valid, and heterocedastic and correlated dis-

turbances have been frequently observed. Stream flow, as a natural phenomenon, is

continuous in time and so are the meteorological variables which influence its vari-

ability. In practice, it can be of interest to forecast the whole flow curve as well as

points (hourly, daily or weekly) (Masselota et al., 2016).

The most commonly used conventional data driven models refer to multiple lin-

ear regression (MLR), the autoregressive integrated moving average (ARIMA), and

autoregressive-moving average with exogenous terms (ARMAX) model. In the sta-

tistical analysis of time series, ARIMA models tend to provide a description of a

stationary stochastic process in terms of two polynomials, one for autoregression

and the other for moving average. These models have been used since 1970 (Zhang,

Zhang, and Singh, 2018). Typical explanatory variables are precipitations and tem-

peratures. However, since these models cannot handle nonlinear issues, their fore-

casting accuracy and performance cannot be ensured. Therefore, MLR, ARIMA and

ARMAX models have been used for comparing the modeling performance of alter-

native models, giving a lower bound on performances of other nonlinear models.

Lane, Diskin, and Renard (1971) studied transmission losses and routing in Wal-

nut Gulch using regression of input hydrograph parameters and output hydrograph

parameters. It was found that volume and peak of outflow are strongly correlated

with input volume and no significant correlation to antecedent wetness index. They
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used their predictions of time of travel, hydrograph peak and volume to fit three-

parameter Gamma distributions to the downstream hydrograph.

Bonne (1971) developed a model for simulation of monthly stream flow series,

which included precipitation and stream flow. The independent variables in the re-

gression function represented the previous month’s flow, current precipitation, an-

tecedent month’s precipitation and the accumulated precipitation, with a response

of current stream flow. Three watersheds with different geographic characteristics

were selected and stream flow for each basin was simulated and compared with

the measured records. The results were also compared with those obtained by the

simple regression Markovian model. In most cases, a definite improvement was

achieved over the simple regression model.

Jarboe and Haan (1974) used a MLR model to relate four parameters of Haan

(1972) model and measurable catchment characteristics. The four parameters in-

cluded maximum possible infiltration rate, the maximum possible seepage rate, the

maximum capacity of that part of the soil’s moisture-holding capacity, which is less

readily available for evapotranspiration, and the constant defining the fraction of

seepage that becomes runoff.

Magette, Shanholtz, and Carr (1976) used Jones, 1976 procedure to fit a subset

of six parameters of the Kentucky watershed model, and were able to obtain an

acceptable MLR equation using indices of 15 watershed characteristics.

Krstanovic and Singh (1991) first used ARIMA in univariate long-term stream

flow forecasting. They found that forecasts by ARIMA and univariate models were

comparable for periodic stream flow, but for forecasting of highly variable stream

flows, the univariate model was superior.

Xu, Seibert, and Halldin (1996) developed relationships between parameters of a

monthly water balance model and the land-use data for Swedish catchments. They

used regression equations to calculate model parameters from catchment character-

istics.

Torfs and Warmerdam (2001) presented a black box approach for rainfall-runoff

modeling at a daily scale. They highlighted the following aspects: incorporation of

memory, periodicity and non-linearity to the catchment of the Beerze in the Nether-

lands. They found it feasible to model catchment runoff with black box models,

using rainfall data only.

Somvanshi et al. (2006) investigated modeling tools for predicting the behavioural
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pattern of rainfall. Two different approaches such as a statistical based ARIMA and

ANNs were used. In evaluating the prediction accuracy, they made use of mean

annual rainfall data from 1901 to 2003. The models were trained on 93 years of data

and tested on the remaining 10, showing the ANN model to outperform the ARIMA

model in predicting rainfall.

Asati and Rathore (2012) developed an autoregressive model, as well as a multi-

ple linear regression model and ANN for a complex non-linear relationship between

rainfall as input data and output as runoff, without considering other elements of the

process and compared the performance of each model.

2.4 Application Horizon of ANN

ANN modeling has been a useful technique in many problems, particularly in those

with which the characteristics of the processes are tedious to describe by physical

equations. Many researchers have proposed the applicability of ANNs to varying

problems in science, engineering, industry, business, economics and environmen-

tal fields. The application horizon of ANN extends from problems of image detec-

tion using convolutional neural networks to remote sensing and seawater pollution

classification. A few interesting applications will be presented, followed by those

pertaining topics in ecology.

Zazo et al. (2016) investigated language identification in short utterances us-

ing Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNN). Results

showed that a LSTM RNN without offset modeling is able to detect these languages

and generalizes robustly to unseen out of set languages.

Suwajanakorn, Seitz, and Kemelmacher-Shlizerman (2017) used recurrent neural

networks that used audio and synthesized it with lip motion of a face in a video to

reenact politicians. The Google Sunroof Project uses aerial photos from Google Earth

to create a 3-D model of one’s roof. The project uses Deep Learning neural networks

to separate the roof from surrounding trees and shadows. It then uses the sun’s

trajectory and weather patterns to predict how much energy can be produced by

installing solar panels on your roof. Furthermore, the Apple AI, Siri as well as Ama-

zons Alexa use recurrent neural networks, in particular, the LSTM model (Smith,

2016; Vogels, 2016).
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ANNs have also been used in river flow prediction (Imrie, Durucan, and Korre,

2000), stream flow (Zealand, Burn, and Simonovic, 1999) and land drainage (Yang,

Prasher, and Lacroix, 1996).

Han and Felkar (1997) estimated daily soil water evaporation using radial basis

function ANNs. These models were used to evaluate daily water evaporation from

average relative humidity, air temperature, wind speed and soil water content in a

cactus field study. The results of the ANN proved to be better than a multiple linear

regression analysis.

Kumar et al. (2002) used ANNs to estimate daily grass reference crop evapotran-

spiration and compared the performance of these ANNs with traditional conven-

tional methods. Issues associated with the use of ANNs were examined, including

learning methods, the number of hidden nodes as well as the number of hidden

layers.

Karmakar, Kowar, and Guhathakurta (2009) used ANNs to model the spatial

interpolation of rainfall variables. They applied their methods to 102 rain gauge

stations. A three layer perceptron FFNN proved to achieve good results.

The use of ANN in ecological problems has been widely studied, to give promis-

ing results more often than not. It turns out that their use in stream flow prediction

has been a growing interest in the past two decades.

2.5 ANN Stream Flow Prediction Models

Traditional stream flow estimation techniques require both reliable rainfall-runoff

records and a procedure for updating model parameters from time to time. It is not

feasible to set up and maintain rain gauge stations over many locations for a long

period of time. Although many large catchments are monitored, there exist a lot

of smaller catchments which are not, which may play an important role in many

area’s water supply. Thus, it may be beneficial to compile a general purpose model

for all catchments of similar characteristics. It was seen (from literature above) that

runoff values have been estimated by many researchers using climatic variables and

models which require data that is not easily available. Simpler data driven meth-

ods such as fitting a linear relationship between the variables, with runoff as the

response, have proven to fall short in prediction accuracy as it is evident that the

rainfall-runoff process is highly nonlinear (Krstanovic and Singh, 1991; Somvanshi
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et al., 2006). There is a stressed need for accurate estimates of runoff using models

which consider the inherent nonlinearity of the process and which may use inputs

easily available. It has been reported that ANNs may offer an alternative to conven-

tional data driven methods (ASCE, 2000) for predicting runoff. Black-box models,

such as ANNs, describe the relationship between input (rainfall) and output (runoff)

without describing the inherent physical process. The ANN is hypothesized to learn

these processes in the calibration phase. These ANN models seek to establish a sta-

tistical relationship between the input and the output and have proven successful

within a range of data available from a catchment (Dawson and Wilby, 2001; Harun,

Nor, and Kassim, 2002; Carcano et al., 2005). It is proposed that the mathematical

structure of the ANN carries with it an implicit representation of the underlying

physical process. The biggest advantage of the ANN approach in predicting runoff

is that it requires only rainfall data. First studies using ANNs for rainfall-runoff

prediction date back to the early 1990s (A. H. Halff and Azmoodeh, 1993; Daniell,

1991), which find the method useful for forecasting processes in the hydrological

application.

Karunanithi et al. (1994) made use of a FFNN model to forecast stream flow. The

accuracy of this model was compared with that of a nonlinear power model and

it was found that the ANN outperformed the nonlinear power model in predictive

accuracy.

Lorrai and Sechi (1995) used ANN to model the rainfall-runoff transformation.

Two hidden layers were used with a sigmoid activation function. Using back prop-

agation, a learning rule was developed. Monthly data of rainfall and temperature

were used to predict monthly runoff. The data was divided into three 10 year pe-

riods in order to calibrate, verify and test the model. It was found that ANNs pro-

vided higher efficiency during model development and were superior to multivari-

ate auto-regressive models. There was a downfall in the verification of the results of

the developed model.

Hsu, Gupta, and Sorooshian (1995) showed the application of an ANN approach

in describing the rainfall-runoff process. The ANN approach was used to provide a

better representation of the rainfall-runoff process than the linear ARMAX time se-

ries approach and the conceptual Sacramento Soil Moisture Accounting (SAC-SMA)

model. A total of six years of data were used for the development and testing of the

model. This was split into development and testing data on a ratio of 5:1.
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Carriere, Mohaghegh, and Gaskar (1996) conducted the first study using recur-

rent neural networks (RNNs) for rainfall-runoff modeling. They tested the use of

RNNs within laboratory conditions and demonstrated their potential use for event-

based applications.

Hsu, Gupta, and Sorooshian (1997) used two different ANN model structures

to model the rainfall-runoff process for the Leaf River Basin in Mississippi. Their

results showed that both structures, the popular Three Layer Feedforward Neural

Network (TLFNN) and the RNN, perform well. However, the TLFNN requires trial-

and-error testing to identify the appropriate number of time-delayed input variables

to the model. Furthermore, it is not suitable for distributed watershed modeling;

i.e., when distributed precipitation information (multiple gages or radar images)

is available. The RNN structure provides a representation of the dynamic internal

feedbacks loops in the system, thereby eliminating the need for lagged inputs and

resulting in a reduction in the number of network weights (and hence training time).

The suitability of RNN’s for distributed watershed modeling was discussed in their

paper.

Shamseldin (1997) applied a multi-layer FFNN to rainfall-runoff modeling on the

data of six different catchments. It was tested against three selected rainfall-runoff

models, namely, simple linear model (SLM), seasonality based linear perturbation

model (LPM) and the nearest neighbour linear perturbation model (NNLPM). In

verification, one or the other form of neural network was better than the three mod-

els in case of four out of the six catchments. Possible reasons for better results were

not specified.

Zealand, Burn, and Simonovic (1999) investigated the use of ANNs for short

term forecasting of stream flows. This approach was applied to a portion of the

Winnipeg River system in Canada. A close fit was obtained during the calibration

phase and the ANNs outperformed a conventional model during the verification

phase.

Tokar and Johnson (1999) studied the application of an ANN methodology to

predict daily runoff as a function of daily temperature, precipitation and snow melt

in the Little Patuxent River catchment in Maryland. It was found that the content

and length of training data had a large impact on prediction accuracy. The ANN

model outperformed regression and conceptual models. This ANN model provided

a more systematic approach, reducing the length of calibration data.
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Tokar and Markus (2000) used ANN models to compare their predictive accuracy

of runoff as a function of rainfall and temperature against other traditional concep-

tual models. The ANN model was applied to model monthly stream flow, com-

paring to a conceptual water balance model. The model was also used to describe

the daily rainfall-runoff process comparing this with the Sacremento Soil Moisture

Accounting (SAC-SMA) model and the Simple Conceptual Rainfall-Runoff (SCRR)

model. In all scenarios, the ANN model showed higher prediction accuracy.

Dawson and Wilby (2001) assessed two neural networks viz. the radial basis

function network (RBF), and the multilayer perceptron (MLP), using rainfall-runoff

data for the River Yangtze in China from 1991 to 1993. It was seen that both network

types could simulate stream flow beyond the range of the training set. Comparisons

were made between neural networks and conventional statistical techniques such

as stepwise multiple linear regression, and ARIMA models showing that the ANN

outperformed the other models.

Rajurkar, Kothyari, and Chaube (2002) developed both linear and non-linear

models as well as ANNs for transforming daily rainfall into runoff in the Narmada

catchment area. They found that the ANN model produced a higher prediction ac-

curacy than both the linear and non-linear models.

Harun, Nor, and Kassim (2002) designed an ANN model to predict daily runoff

using rainfall as input nodes. The Sungai Lui catchment in Selangor Malaysia was

used as the study area. Results of the ANN model were compared to the Hydro-

logic Modeling System (HEC-HMS) model, ultimately finding that the ANN models

showed a better generalization of the rainfall-runoff relationship.

Wilby, Abrahart, and Dawson (2003) examined the internal behaviour of an ANN

rainfall-runoff model and showed that specific architectural features could be inter-

preted with respect to the quasi-physical dynamics of a parsimonious water balance

model. Neural networks were developed for daily discharge simulated by a con-

ceptual rainfall-runoff model for the Test River basin in southern England. Neural

outputs associated with each hidden node, produced from the output node after

all other hidden nodes had been deleted, were then compared with state variables

and internal fluxes of the conceptual model (including soil moisture, percolation,

groundwater recharge and baseflow). Correlation analysis suggested that hidden
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nodes in the neural network correspond to dominant processes within the concep-

tual model. In particular, different hidden nodes are associated with distinct “quick-

flow” and “baseflow” components, as well as a threshold state in the soil moisture

accounting. The results also demonstrated that, for this river basin, a neural network

with seven inputs and three hidden nodes could emulate the gross behaviour of the

conceptual model.

Nagesh Kumar, Srinivasa Raju, and Sathish (2004) investigated two different net-

works, namely the feed forward network and the recurrent neural network on mod-

eling rainfall-runoff. The feed forward network was trained using the conventional

back propagation algorithm with many improvements and the recurrent neural net-

work was trained using the method of ordered partial derivatives. The selected

ANN models were used to train and forecast the monthly flows of a river in India,

with a catchment area of 5189 km2 up to the gauging site. The trained networks were

used for both single step ahead and multiple step ahead forecasting. A comparative

study of both networks indicated that the recurrent neural networks performed bet-

ter than the feed forward networks. In addition, the size of the architecture and

the training time required were less for the recurrent neural networks. The recur-

rent neural network gave better results for both single step ahead and multiple step

ahead forecasting. Hence recurrent neural networks are recommended as a tool for

river flow forecasting.

Riad et al. (2004) developed a rainfall-runoff ANN model and compared this to a

MLR model showing the effectiveness of the ANN model. The results and compar-

ative study indicate that the artificial neural network method was more suitable to

predict river runoff than a classical regression model.

De Vos and Rientjes (2005) reported on the application of multi-layer feed-forward

ANNs for rainfall-runoff modeling of the Geer catchment (Belgium) using both daily

and hourly data. The daily forecast results indicate that ANNs can be considered

good alternatives for traditional rainfall-runoff modeling approaches, but the simu-

lations based on hourly data reveal timing errors as a result of a dominating autore-

gressive component. This component was introduced in model simulations by using

previously observed runoff values as ANN model input, which is a popular method

for indirectly representing the hydrological state of a catchment. They commented

on the use of lagged variables as input to the models. They concluded that comple-

mentary conceptual models can be valuable additions to ANN model approaches.
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Secondly, they found that not all differences between modeled and observed hydro-

graph characteristics can be adequately expressed by a single performance measure

such as the MSE. Using more than one performance measure for the evaluation of

ANN models during training might therefore improve the quality of these models.

(Carcano et al., 2005) simulated potential scenarios in rainfall-runoff transforma-

tion at the daily scale. This was done for the control and management of water re-

sources. FFNNs and RNNs were investigated to show that the RNN outperformed

the FFNN especially when rainfall memory effect was employed as an additional

input.

Pan et al. (2008) investigated the application of recurrent neural networks to

the rainfall-runoff process for the Keelung River, Taiwan. They compared the per-

formances of recurrent neural network models with general feed forward neural

networks. The Deterministic Linearized Recurrent Neural Network (DLRNN) was

the main focus of the study and it was found that this model far outperformed the

feed forward neural network. The results showed that the performance was satis-

factory and DLRNN is competent to simulate dynamic systems, like rainfall-runoff

processes.

Sedki, Ouazar, and Mazoudi (2009) investigated the effectiveness of the genetic

algorithm (GA) evolved neural network for rainfall-runoff forecasting and its appli-

cation to predict the runoff in a catchment located in a semi-arid climate in Morocco.

To evaluate the performance of the genetic algorithm-based neural network, back

propagation neural networks were also involved for a comparison purpose. The re-

sults showed that the GA-based neural network model gives superior predictions.

The well-trained neural network can be used as a useful tool for runoff forecasting.

Machado et al. (2011) developed three different monthly rainfall-runoff models

using ANNs. These were compared with a conceptual model at the monthly time

scale to prove the ability of the ANN model to accurately predict the observed flows.

This study evaluated the capacity of ANNs to model with accuracy the monthly

rainfall-runoff process. The case study was performed in the Jangada River basin,

Brazil. The results of the three ANNs that produced the best results were compared

to those of a conceptual model at a monthly time scale. The ANNs presented the

best results with the highest correlation coefficients and Nash-Sutcliffe statistics and

the smallest difference of volume.

Sinha, 2011 developed Back Propagation Artificial Neural Network (BPANN)
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and radial basis function ANN (RBFANN) models to assess their runoff simula-

tion applicability for the Upper Kharun catchment. These models were evaluated in

comparison with multiple linear regression (MLR) runoff simulation models. Com-

parisons of the MLR, BPANN and RBFANN models showed that RBFANN models

performs better than BPANN and MLR models. It was found that training and test-

ing results revealed that the models simulated the daily, weekly and monthly runoff

yield satisfactorily. Therefore, these ANN models, based on simple inputs can be

used for estimation of runoff, missing data and testing the accuracy of other models.

Chen, Wang, and Tsou (2013) developed a model for estimating runoff by using

rainfall data from a river basin and employed a neural network technique to recover

missing data. Hourly rainfall and flow data from Nanhe, Taiwu, and Laii rainfall

stations and Sinpi flow station in the Linbien basin were used. The data records

were of 27 typhoons between the years 2005 and 2009. The feed forward back prop-

agation network (FFBP) and conventional regression analysis (CRA) were employed

to study their performances. From the statistical evaluation, it was found that the

performance of FFBP exceeded that of regression analysis.

Gowda and Mayya (2014) used ANN for forecasting stream flow in natural rivers

using rainfall data from several different rain gauge stations.

Kratzert et al. (2018) investigated the use of recurrent neural networks, in partic-

ular, the long short-term memory (LSTM) networks to model the rainfall-runoff pro-

cess on a dataset of 671 catchments. It was found that the LSTM model performed

very well on the testing data and it was suggested that this model be used over tradi-

tional feed-forward neural networks due to its ability to memorize previous output.

They concluded with a very interesting result that the LSTM unintentionally gener-

ated observable snow dynamics within a cell state, suggesting that there is more to

find behind the scenes. In simpler terms, they found that the value of the cell state

increases as soon as the temperatures drop below zero and a fast depletion is evident

as soon as the temperatures increases above the freezing point. The application of

LSTMs and its further development therefore have a high potential to extend data-

based mechanistic modeling approaches in the field of hydrology, e.g. rainfall-runoff

modeling.

Other soft computing techniques, besides ANNs, have been used for develop-

ing rainfall-runoff models. These techniques include Genetic Algorithms and Fuzzy

Logic (Chandwani et al., 2015).
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The applications of ANN and RNN, in particular, to hydrological modeling has

been rapidly growing in recent years. Between 2000 and 2018 over 20 papers were

published, and reviewed in terms of the modeling process, in which RNNs have

been used for simulation or forecasting of water resources variables. Due to the

rapid increase in journals, it is unlikely that complete coverage has been achieved.

The LSTM is proposed to be the "state-of-the-art" architecture where the sequential

nature of the data matters. Due to this, FFNN and RNN will be the focus of this

paper, with the LSTM model being of interest.
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Chapter 3

Theoretical Considerations

Transformation of rainfall into runoff - a hydrological process, is believed to be

highly nonlinear, spatially distributed, time variant and difficult to describe by sim-

ple models. This chapter deals with theoretical considerations of artificial neural

networks, recurrent neural networks and the long short-term model.

3.1 ANN Modeling

Artificial neural networks (ANNs) are one of the most powerful tools used in ma-

chine learning and artificial intelligence (AI). Inspired by the biological neural net-

works of the brain, they can tackle a wide range of problems that defeat traditional

AI, including computer vision, speech recognition, natural language processing, and

robotics (Martin and Schuermann, 2016). A neural network is a system of intercon-

nected neurons which send signals to one another Tchircoff (2017). The strengths

of these connections between the neurons, also known as weights, determine the

network’s behaviour. More importantly, these weights can be systematically tuned

to make the neural network behave in a highly specific, desirable way. The ANN

occurs in organised layers. Some of the layers are termed hidden layers. The num-

ber of hidden layers is controlled by the researcher and subject to the complexity

required. The complexity of the model increases as the number of hidden nodes

(neurons) increases. The training is done in a way that neurons’ connections are

optimized until the error in predictions is minimized. Once the training is done,

the ANN can be tested with a new set of information. ANN require no knowledge

of the data source or its underlying distribution but require large training data sets

(Agatonovic-Kustrin and Beresford, 1999).
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3.2 Basic concepts of ANN

The framework as well as the optimisation scheme is the basis of ANNs. The struc-

ture of the ANN includes many single units called nodes or neurons, which are

grouped into layers, viz. input, hidden, and output layers. The input layers con-

sist of neurons that receive input from the external environment. The output layer

consists of neurons that communicate the output of the system to the user or ex-

ternal environment. There are generally a number of hidden layers between input

and output layers. The network receives inputs to be modeled in the input layer

and are multiplied by some weight value and added together to pass through an

activation function. This activation function determines if the neuron should react,

or be "activated". Each activated neuron in the input layer sends a signal to all the

neurons in the next layer, which is the hidden layer. The strength of the signal is

dependent on both how much the neuron is activated and on the weight of the con-

nection between the two neurons. Each neuron in the hidden layer then adds up all

of the signals it received from neurons in the input layer. The reaction signals then

passes through a transfer function which decides the strength of the output signal.

Finally, the output signal is sent through all the output connections to other nodes

or neurons. The activation function is usually simple and easily differentiable, such

as sigmoidal functions.

Network weights are randomly initialized when the network is created and these

are allowed to hold any real number value (Ellacott and D, 1996). The number of hid-

den nodes or neurons can be found through trial and error. By increasing the number

of hidden neurons beyond a certain limit, over fitting can occur, consequently, the

training data set will be memorized, hence, making the network useless for new data

sets (Sinha, 2011).
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FIGURE 3.1: Visual Structure of neuron in ANN [Source: Saxena
(2017)]

Figure 3.1 shows the basic structure of an artificial neuron. It receives input data

which are represented by x1, x2,...,xn which are weighted by w1, w2,..,wn respectively

and summed. This weighted sum is passed through an activation function (Section

3.3) or transfer function to map the weighted sum in between some range. The result

is then used to achieve the output. This output can be used as an input in a feedback

neural network or it can be recorded as an output of a FFNN. Bias neurons allow the

network output to be translated to the desired output range. A bias neuron is simply

a neuron with an activation set to the maximum possible value. This value, along

with those of all the other neurons in the same layer, is passed along to all neurons

in the next layer. The function of the bias neuron is to shift the input sums in the

next layer by a value that is independent of the input to the neural network. This

allows the network to represent functions which are affine in nature. Essentially, its

effect is the same as shifting the activation functions of the neurons in the next layer

horizontally. This allows us to translate the output to the desired output range.

Hornik, Stinchcombe, and White (1999) concluded that an ANN with a single

hidden layer, having a sufficient number of neurons can approximate any complex

nonlinear function to an acceptable degree. Although several authors have given

certain empirical equations to approximately estimate the number of neurons in

the hidden layer (Hunter et al., 2012; Molga, 2003; Pendharkar and Rodger, 2003;

Tamura and Tateishi, 1997), it is preferred to adopt trial and error approach for de-

ciding the optimal number of neurons in the hidden layer.
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3.3 Activation Functions

Activation functions are an integral part of neural networks. They decide whether

the information of a specific neuron is important. If the activation function were not

present then we would have a linear regression model that may not be able to handle

highly nonlinear problems such as those presented in this paper. There exist a wide

range of activation functions, each with their benefits, however we will present the

few which have been used in this project. The choice of type of activation function

effects the evaluation of the model, however this choice is mathematically arbitrary.

It is true, though, that the behaviour of the activation functions in hidden layers

affects how the model learns in practice. This is due to the fact that the mechanism

by which the parameters of the network are tweaked during learning operates via

the evaluation of the activation function.

3.3.1 Sigmoid function

The Sigmoid activation function is one of the most frequently used in most applica-

tions (Walia, 2017). It is a nonlinear function denoted as the following:

f (x) =
1

1 + e−x =
ex

ex + 1
for−∞ ≤ x ≤ ∞.

Other forms of the function include:

f (x) =
1

1 + e−αx and f (x) =
1

1 + e−g(x−b)
, (3.1)

where α, g, and b are the learning rate, gain and bias respectively.
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FIGURE 3.2: Activation Functions [Source: Pienaar (2018)]

Figure 3.2 above graphically represents the sigmoid activation function and its

derivative. One of the issues regarding the sigmoid functions is that the gradient

approaches zero as X becomes more extreme which means at this point the network

does not do much learning. The Range of the sigmoid function is between (0, 1)

which prevents activations from blowing up but it returns all positive values. This

issue can be addressed with the hyperbolic tangent function (3.3.2).

3.3.2 Hyperbolic Tangent function

Though the logistic sigmoid has a pleasing biological interpretation (The Study of

Population Growth in Organisms Grouped by Stages), it turns out that the logistic sig-

moid can cause a neural network to get "stuck" during training (Stansbury, 2018).

An alternative to the logistic sigmoid is the hyperbolic tangent, or tanh function:

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x . (3.2)

Like the logistic sigmoid, the tanh function (Figure 3.2) is also sigmoidal (“s”-

shaped), but instead outputs values that range (−1, 1). An important property of

this function is that only zero-valued inputs are mapped to near zero outputs.
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3.3.3 Rectified Linear Units

Rectified linear units (ReLU) are simply defined as the positive part of its argument:

f (x) = x+ = max(0, x). (3.3)

When looking at the gradient functions for each activation in figure 3.2 it is seen

that for sufficiently large inputs there may be very little change in the value of the

activation function. The affects of this will become clear when one implements back-

propagation.

3.4 Network Topologies

ANNs have become one of the most prominent concepts in the field of artificial in-

telligence. ANNs have already been applied in the thousands of applications across

all fields of study. The key issue of ANN modeling is that in almost all situations

the performance depends largely on the architecture of the model (Hochreiter and

Schmidhuber, 1997). As a result, designing a proper ANN is always a vital issue in

the field of neural networks. The determination of an appropriate ANN architecture

is always a challenging task for the ANN designers (Islam et al., 2007). The network

topology refers to the arrangement of the ANN’s nodes and connections. There are

different kinds of topology such as feed forward networks which is a non-recurrent

network meaning that the output produced by the network does not get feed back

into to the network as a variable. There are two types of feed forward networks, sin-

gle layer and multilayer layer feed forward networks. Another network type is that

of feedback networks, in which the signal can flow in both directions via loops. In

deciding on a network typology, the researcher should look specifically at the nature

of the problem as well as endure a period of trial and error. Here, we explain the

different topologies used in this paper explained by their updating equations.
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3.4.1 Feed-Forward ANN

One way of forecasting stream flow from rainfall would be to ignore the sequen-

tial nature and build a per time interval regression that considers each time step in

isolation. Also known as a multilayer perceptron, Feed-Forward Neural Networks

(FFNN) are the commonest types of neural networks (NN) in practical application.

This topology of networks consists of multiple layers of computational units, usu-

ally interconnected in a feed-forward way. Each neuron in one layer has connections

directed to the neurons of the next layer. In this network, the information moves in

only one direction, forward, from the input nodes, through the hidden nodes (there

may be many) and to the output nodes. There are no cycles or loops in the network.

Multilayer networks use a variety of learning techniques, the most popular being

back-propagation.

Consider modeling a dataset consisting observations of p inputs xT
i = [xi1, xi2, . . . , xip]

and q outputs yT
i = [yi1, yi2, . . . , yiq] for i = 1, 2, . . . , N (a total of N training exam-

ples). Let al
j denote the jth node on the lth layer of a standard feed-forward neural

network, then the network structure can be written as an updating equation:

al
j = σl

( dl−1

∑
k=1

al−1
k wl

kj + bl
j
)

l = 1, . . . , J; j = 1, . . . , dl , J − 1. (3.4)

Where:

• σl(.) denotes an activation function on layer l. Addressed in Section 3.3.

• dl−1 denotes the number of nodes in layer l − 1.

• wl
kj denotes the kjth weight parameter linking the kth node in layer l− 1 and jth

node in layer l.

• bl
j denotes the jth bias in layer l.

• and the equation is evaluated subject to the initial conditions a(0)j = xij for all j

at the ith training example.
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FIGURE 3.3: A mostly complete chart of neural networks [Source:
Tchircoff (2017)]
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FIGURE 3.4: Architecture of a feed-forward neural network [Source:
McGonagle (2018)]

With respect to the problem at hand, the simplest FFNN would consist of a sin-

gle input (rainfall) and a single output (stream flow). We do, however, know that

the stream flow would be a function of both current rainfall as well as historical

rainfall and historical stream flow. It may, therefore, be beneficial to include lag

variables as input data as well as current rainfall. These lags may be of more impor-

tance than current rainfall itself, considering the memory of catchments including

groundwater, snow or even glacier storages, with lag times between precipitation

and discharge up to several years.

3.4.2 Recurrent Neural Network

Ignoring the sequential aspect of the data could prove problematic. If after a drought,

it rained substantially, stream flow may not respond as it would had it been in a

wetter period. One of the appeals of RNNs is the idea that they might be able to

connect previous information to the present task. RNNs, such as LSTM (Hochreiter

and Schmidhuber, 1997) and Gated Recurrent Unit (GRU), have shown to achieve

the state-of-the-art results in many applications with time series or sequential data,

including machine translation (Sutskever, Vinyals, and Le, 2014) and speech recog-

nition (Hinton et al., 2012).

Unlike the FFNN, RNNs contain hidden states which are distributed across time.

This allows them to efficiently store a lot of information about the past. As with

a regular FFNN, the nonlinear dynamics introduced by the nodes allows them to

capture complicated time series dynamics (Lewis, 2017). Neural networks can be

classified into dynamic and static. Static neural networks calculate output directly

from the input through feed-forward connections described above. In a basic feed-

forward neural network, the information flows in a single direction from input to

output. These networks have no feedback properties. In a dynamic neural network,
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the output depends on the current input to the network, and the previous inputs,

outputs, and/or hidden states of the network. Recurrent neural networks are exam-

ples of dynamic neural networks.

The core idea of recurrent neural networks is that the connections allow memory

of previous inputs to persist in the network’s internal state, and thereby influence

the network’s output. The steps in the process of the recurrent neural network are

similar to that of the feed-forward neural network, however, the value held in the

delay unit is fed back to the hidden units as additional input. The delay units allow

the network to have short term memory. The RNN has a "memory" which captures

information about what has been calculated by the hidden units at an earlier time

step. Time-series data contain patterns ordered by time. Information about the un-

derlying data generating mechanism is contained in these patterns. RNNs take ad-

vantage of this ordering because the delay units exhibit persistence. It is this “short

term” memory feature that allows an RNN to learn and generalize across sequences

of inputs (Lewis, 2017).

Furthermore, RNNs are constructed of multiple copies of the same network, each

passing a signal to a successor. The model therefore shares the same parameters

across all time steps as it perform the same task at each step, only with different

inputs. This allows a reduced total number of parameter required to learn relative

to a traditional deep neural network which uses a different set of weights and biases

for each layer. This is easily seen in the network architecture is displayed below:

The output (in our case discharge) for a specific time step is predicted from the

input x = [x−n, ..., x0] consisting of the last n consecutive time steps of independent

variables (in our case daily or weekly precipitation) and is processed sequentially. In

each time step t(−n ≤ t ≤ 0), the current input xt is processed in the recurrent cells

of each layer in the network.

When trying to predict stream flow from rainfall, it is entirely possible for the

gap between relevant information and the point where it is needed to become very

large. In theory, RNNs are absolutely capable of handling such long term dependen-

cies. However, in practice, this is not the case (Kratzert et al., 2018). The problem

was explored in depth by Hochreiter and Schmidhuber (1997) and Bengio, Simard,

and Frasconi (1994), who found some pretty fundamental reasons why it might be

difficult. The Long Short-Term Model (LSTM) does not have this problem.
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FIGURE 3.5: RNN architecture [Source: Kratzert et al. (2018)]

3.4.3 Long Short-Term Model

In this section, we introduce the LSTM architecture in more detail. We will describe

the technical aspects of the network internals as well as the hydrological interpreta-

tion of the LSTM in order to bridge the differences between the hydrology and deep

learning research communities1. For problems, for which the sequential order of

the inputs matters, the current state-of-the-art network architecture is the so-called

LSTM, which in its initial form was introduced by Hochreiter and Schmidhuber

(1997).

The LSTM topology is a special kind of RNN, designed to overcome the weak-

ness of the traditional RNN to learn long-term dependencies (Kratzert et al., 2018).

The traditional RNN has been shown to hardly remember sequences with a length of

over 10 (Bengio, Simard, and Frasconi, 1994). For modeling daily runoff, this would

imply that we could only use the previous 10 days of hydrological data as input to

predict the runoff of the next day. This period is too short considering the memory

of catchments including groundwater, snow or even glacier storages, with lag times

between precipitation and discharge up to several years (Kratzert et al., 2018).

All RNNs have the form of a chain of repeating modules of neural network. In

standard RNNs, this repeating module will have a very simple structure, such as a

single tanh layer.

1This section was largely from Kratzert et al. (2018)
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FIGURE 3.7: Recurrent cell differences of RNN and LSTM [Source:
Olah (2015)]

FIGURE 3.6: Repeating module in a standard RNN containing a sin-
gle layer [Source: Olah (2015)]

The difference of the traditional RNN and the LSTM are the internal operations

of the recurrent cell (encircled in Figure 3.5) which are depicted in Figure 3.7.

In a traditional RNN, only one internal state ht exists which is recomputed in

every time step by the following equation:

ht = f (Wxt + U f ht−1 + b) (3.5)

where f (.) is the activation function (typically the hyperbolic tangent), W and U are

the adjustable weight matrices of the hidden state h and the input x, and b is an

adjustable bias vector.

Differing from this, the LSTM has an additional cell memory ct in which infor-

mation is stored, as well as three gates that control the information flow within the

LSTM cell (encircled ’x’ in Figure 3.7). Introduced by Gers, Schmidhuber, and Cum-

mins (2000), the first gate is the forget gate. This forget gate controls which elements
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of the cell state vector ct−1 will be forgotten. This is computed by the following

equation:

ft = σ(Wf xt + U f ht−1 + b f ) (3.6)

where ft is a vector with values in the range (0, 1), σ(.) represents the logistic

sigmoid function and Wf , U f and b f define the set of learnable parameters for the

forget gate, which are two adjustable weight matrices and a bias vector. For the

traditional RNN, the hidden state h is initialized in the first time step by a vector of

zeros with a user-defined length.

In the step which follows, an update vector for the cell state is computed from

the current input (xt) and the last hidden state ht−1 given by the following equation:

c̃ = tanh(Wc̃xt + Uc̃ht−1 + bc̃) (3.7)

where c̃ is a vector with values in the range (-1, 1), tanh(.) is the hyperbolic tan-

gent and Wc̃, Uc̃ and bc̃ are another set of learnable parameters. The input gate is

then computed, defining which and how much information of c̃ is used to update

the cell state in the current time step:

it = σ(Wixt + Uiht−1 + bi) (3.8)

where it is a vector with values in the range (0, 1), and Wi, Ui and bi are a set of

learnable parameters, defined for the input gate.

From the results of equations 3.6, 3.7 and 3.8, the cell state, ct can be updated

using the following equation:

ct = ft � ct−1 + it � c (3.9)

where � is the Hadamard product (element-wise multiplication). ft and it both

have values in the range (0,1) and thus equation 3.9 may be interpreted in such a

way that it defines which information is stored in ct−1 will be kept (values of ft

which are close to 1) and which will be forgotten ( ft which are close to 0). This

equation also decides which new information will be added to thee cell state and

which will be ignored. Similar to the hidden state vector, the cell state is initialised

by a vector of zeros in the first time step. The final gate is the output gate, which
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controls the information of the cell state that flows into the new hidden state. This

gate is calculated using the following equation:

ot = σ(Woxt + Uoht−1 + bo) (3.10)

where ot is a vector with values in the range (0,1), and Wo, Uo and bo are a set

of learnable parameters which are defined for the output gate. From ot, the new

hidden state ht is calculated by combining equations 3.9 and 3.10 to give:

ht = tanh(ct)� ot (3.11)

It is the cell state that allows an effective learning of long-term dependencies.

Due to the simple linear interactions with the remaining LSTM cell, it can store un-

changed information over a long period of time steps. During training, this charac-

teristic helps to prevent the problem of the exploding or vanishing gradients in the

back propagation step (Hochreiter and Schmidhuber, 1997).

As with other continuous hydrological models, the LSTM processes the input

data at each time step. At every time step, the input data (rainfall) is used to update

several values in the LSTM internal cell states. These cell states can be interpreted

as storages which are often used for groundwater storage and soil water content,

etc. Updating the states of these internal cells is regulated through several gates

which regulate depletion, increase, and outflow of storages. The parameters of each

of these gates are adapted and adjusted during a calibration period. In contrast to

conventional hydrological models, the LSTM does not "know" the principle of water

conservation and the governing processes and is optimized to predict the runoff as

good as possible, learning these physical principals during the calibration phase,

purely from the data.

3.5 Network Training

In order to train neural networks, some variant of stochastic gradient decent is used.

Regardless of the particular algorithm used, a key component in the updating equa-

tion will involve evaluating the gradient of the cost function with respect to the

parameters of the model. It is possible to derive general expressions for the required



Chapter 3. Theoretical Considerations 37

gradients in terms of the model elements. This is what is widely known as back-

propagation.

3.5.1 Back-propagation

Formally derived by Bryson and Ho (1969) and implemented to run on computers

much as it is today by Linnainmaa (1976), back-propagation is a method used in

artificial neural networks to calculate a gradient that is needed in the calculation of

the weights to be used in the network.

The goal of the back-propagation training algorithm is to modify the weights of

a neural network in order to minimize the error of the network outputs compared

to some expected output in response to corresponding inputs. It is a supervised

learning algorithm that allows the network to be corrected with regard to the specific

errors made. The algorithm is as follows:

1. Present a training input pattern and propagate it through the network to get

an output.

2. Compare the predicted outputs to the expected outputs and calculate the error.

3. Calculate the derivatives of the error with respect to the network weights.

4. Adjust the weights to minimize the error.

5. Repeat.

Regression tasks, in the context of supervised learning, usually refer to modeling

continuous responses. That is Yi may take on any value in a continuum of possible

outcomes (Pienaar, 2018). A natural measure for the quality of a prediction is the

distance between the prediction and the observed response for a particular training

example. Assuming N independent examples, we make use of the mean-squared-

error (MSE) objective:

CMSE =
1

2N

N

∑
i=1

(yi − ŷi)
2, (3.12)

where ŷi denotes the prediction. CMSE here represents some distance measure

to be minimised between the observed responses yi and the predictions from our

model. We then wish to evaluate the gradient of the cost function with respect to
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each of the weights and biases, working backwards from the cost function through

the layers of the neural network. We define the linear component:

zl
j =

dl−1

∑
k=1

al−1
k wl

kj + bl
j, (3.13)

with working gradient as follows:

δl
j =

∂C
∂zl

j
. (3.14)

We can now derive the general expressions for the required gradients, starting

with the terminal condition and propagating the errors backwards:

δL
j =

dL=q

∑
k=1

∂C
∂aL

k

∂aL
k

∂zL
j

=
∂C
∂aL

k

∂aL
k

∂zL
j

=
∂C
∂aL

j
σ′(zL

j ).

(3.15)

Iterating backwards from the terminal condition:

δl−1
j =

∂C
∂zl−1

j

=
dl

∑
k=1

∂C
∂zl

k

∂zl
k

zl−1
j

=
dl

∑
k=1

∂zl
k

zl−1
j

δl
k

=
dl

∑
k=1

(wl
jkσ′(zl−1

j ))δl
k

=
dl

∑
k=1

wl
jkδl

kσ′(zl−1
j ).

(3.16)

We can then evaluate the gradient of the cost function with respect to the model

parameters. For the biases of the model, we have:
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∂C
∂bl

j
=

∂C
∂zl

k

∂zl
k

∂bl
j

= δl
j .

(3.17)

Next, for the weights:

∂C
∂wl

kj
=

∂C
∂zl

j

∂zl
j

∂wl
kj

= al−1
k δl

j .

(3.18)

The updating equations for the back-propagation procedure are defined by Equation

3.17 and 3.18 as well as the terminal condition in Equation 3.15.

3.5.2 Back propagation through time

Training RNNs is very similar to training FFNNs. In fact, there is a variant of the

back-propagation algorithm for FFNNs that works for RNNs, called back-propagation

through time (BPTT). As the name suggests, this is simply the back-propagation al-

gorithm applied to the RNN backwards through time. BBTT works by applying the

back-propagation algorithm to the unrolled RNN. An RNN is unrolled by expand-

ing its computation graph over time, effectively "removing" the cyclic connections.

This is done by capturing the state of the entire RNN (called a slice) at each time

instant and treating it similar to how layers are treated in FFNNs. Since the un-

rolled RNN is similar to a FFNN with all elements from the input sequence in the

input layer, the entire input sequence and output sequence are needed at the time of

training.

BPTT begins similarly to back-propagation, calculating the forward phase first to

determine the values of ot (as defined in equation 3.10) and then back-propagating

from ot to o1 to determine the gradients of some error function with respect to the

parameters. The parameters are replicated across slices in the unrolling and there-

fore gradients are calculated for each parameter at each time slice. The final gradi-

ents output by BPTT are calculated by taking the average of the individual, slice-

dependent gradients. This ensures that the effects of the gradient update on the

outputs for each time slice are roughly balanced.
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3.6 Metrics

Although looking at the applicability of ANNs on a hydrological response was a

main focus, comparing the different models used was also important. Conventional

evaluation metrics used to compare the different models included the root mean

squared error (RMSE), the coefficient of determination (R2), and the Nash–Sutcliffe

coefficient of Efficiency (ENS) (Nash and Sutcliffe, 1970). RMSE represents the sam-

ple standard deviation of the differences between predicted values and observed

values (called residuals). Values range from 0 (perfect fit) to ∞ (no fit). R2, known as

the square of the sample correlation coefficient, ranges from 0 to 1 and describes the

amount of observed variance explained by the model. ENS measures the model’s

ability to predict variables different from the mean and gives the proportion of the

initial variance accounted for by the model. The metrics are summarised in Table

3.1, where yi is actual stream flow, ŷi is predicted stream flow, ŷi is the mean of ac-

tual stream flow, ¯̂yi is the mean of predicted stream flow, and n is the number of data

points

Validation Expression Range
RMSE √√√√ 1

n

n

∑
j=1

(yj − ŷj)2

0 ≤ RMSE ≤ ∞

Perfect:0

R
∑−i = 1n(yi − ȳi)(ŷi − ¯̂yi)√

∑−i = 1n(yi − ȳi)2 ∑n
i=1(ŷi − ¯̂yi)2

0 ≤ R ≤ 1

Perfect:1
ENS

1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2

−∞ < ENS ≤ 1

Perfect:1

TABLE 3.1: Showing different metrics used
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Chapter 4

About The Data

It is important to give the meteorological aspects of the study area as to gain more

understanding of the results found and for the bridging of different communities

viz. statistical and hydrological. Before exploring the data, some background on the

study area is provided. This chapter is broadly divided into three subsections viz.

study area, data organisation, and model formulation.

4.1 Study Area

The study area forms part of the Langrivier catchment area in the Jonkershoek Valley

on the boundary of the catchments of the Eerste, Berg and Sonderend rivers1.

4.1.1 Background

The farm Jonkershoek was named after Jan Andriessen to whom it was granted by

Governor Simon van der Stel in 1662. Andriessen had been a midshipman (jonkheer)

in the service of the Dutch East India Company and was known as Jan de Jonkheer

(Jonker). Jonkershoek and a number of adjoining properties constitute the Jonker-

shoek State Forest. A small section along the Eerste River is held on a 99-year lease,

signed in 1933, from the Municipality of Stellenbosch. A network of rain-gauges was

installed, soil and vegetation surveys were completed and work commenced on the

building of stream-gauging weirs.

4.1.2 Location

The Jonkershoek valley in the Western Cape Province is a long narrow valley which

is situated between the Stellenbosch Mountain (SW) and Jonkershoek Mountains

1This section is largely taken from Scott et al. (2000)
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(NE) and is enclosed by the Dwarsberg in the south-east (S33◦57′ ;E18◦55′). All the

streams in the valley form the tributaries of the Eerste River that flows through the

town of Stellenbosch. The catchment used in this study lies on the south west facing

slope of the Jonkershoek mountain with an altitude of 833m above sea level, shown

in Figure 4.1.

FIGURE 4.1: Topographical map of the Jonkershoek catchment area
[Source:Todeschini and Jansen (2016)]

4.1.3 Climatic Characteristics

The climate is of the humid Mediterranean type with warm, dry summers (with

prevailing south easterly winds) and cool wet winters with frequent cyclonic rains.

The mountainous topography has a significant effect on the rainfall, which is of the

highest in South Africa. Snow is not unusual on the higher peaks during the winter

months. The average daily temperature for range from 15.6◦C in July to 26.3◦C in

February. The region is coldest during July when the temperature drops to 6.6◦C on

average during the night (Stellenbosch climate 2017).

4.1.4 Geological and Soil Characteristics

The geology comprises of sandstone and quartzite with intermittent thin shale bands

of Table Mountain Group (Lower Paleozoic Cape Supergroup)- mostly in the upper
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slopes and cliffs of the scarp. These are underlain by Cambrian Cape Granite, which

is found mostly on the lower slopes and valley floor. There are several talus screes

of granite boulders plus sandstone debris. The Jonkershoek valley is closed at the

SE-end by the transverse Dwarsberg block fault.

The soils are fairly complex and of mixed origin, derived primarily of mixed

colluvial material from the above geological formations. These forms are acid sandy

loams (pH 4.1 to 5.7), low in organic matter and in phosphorous. The soils have a low

bulk density, high infiltration capacity and are well-drained. Soil depths range from

roughly 1m to 2m, but are underlain by unconsolidated or decomposed material that

allows free drainage of water as well as exploration by tree roots.

4.2 Data Organisation

All data was provided by the South African Environmental Observation Network

(SAEON).

4.2.1 Collection and Instrumentation

Gauging of the Langrivier weir begun in September 1940 using the Kent2 water level

recorder. The Kent method was then replace by the Belfort3 water level recorder

in March 1961. The South African Environmental Observation Network (SAEON)

begun the automated water level monitoring in January 2011, using the Orpheus

Mini4 water level recorder. The stream flow data consist of hourly readings of the

water volume flowing over a v-notch weir. Weirs were currently calibrated monthly.

Calibrations involved checking the sensor reading against a manual reading of water

level in the weir notch. Deviations (sensor drift or disturbance) within ±3mm are

tolerated, otherwise the sensor is reset to the correct value. Since SAEON automated

water level monitoring in 2011, they have recorded calibration readings and made

them available with the raw data so users can see when the sensors have been reset.

All stream flow data is recorded in cubic meters per hour.

The rainfall data, measured in millimeters, for two rain gauges in the Langriv-

ier catchment was used. These are the only two stations in Langrivier that have a

2More information can be found at https://www.waterworksmuseum.org.uk
3More information can be found at http://www.belfort-inst.com/Model_5-FW-1.htm
4More information can be found at https://www.ott.com/

https://www.waterworksmuseum.org.uk
http://www.belfort-inst.com/Model_5-FW-1.htm
https://www.ott.com/
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historical record predating SAEON and are still being monitored. The rainfall data

gauging begun in January 1944 using the Davis5 tipping bucket rain gauge.

4.2.2 Pre-Analyses

In analysing the data, it is evident that the Langrivier is classified as a perennial river

having continuous flow all year round. It was found that the Langrivier revealed a

maximum value of 58863.6 m3/h. This value may be somewhat misleading as this

seams to be a cap, which was observed several times. It may, therefore, be more

beneficial to look at the summary statistics of daily data instead. Missing stream

flow data exists from October 2008 to August 2011. Rainfall data is missing from

February 2008 to February 2009. The temporal resolution of records changed over

the lifespan of the gauging stations and was different for each station, as is shown

in Table 4.1. The rainfall data from July 2011 until February 2018 was provided in

a format which was difficult to interpret. The raw data was provided which gave

event based rainfall measurements of 0.2mm every time the Davis bucket tipped

(refer to Appendix A). For the purpose of this project, it was decided that this data

would not be used in further evaluation as results and analyses can be compiled

based on the previous years.

Dates Resolution
Rainfall 01/1944 - 02/2008

02/2008 - 02/2009
02/2009 - 09/2012
07/2011 - 02/2018

Daily(8B) &Weekly(14B)
Weekly(8B & 14B)
Event-based:
inappropriate format

Stream Flow 09/1940 - 10/2008
10/2008 - 08/2011
08/2011 - 03/2018

Hourly
Missing Data
Half-Hourly

TABLE 4.1: Details of data

It was seen that stream flow was much lower in the summer, with the lowest ob-

served cumulative yearly stream flow at 2062013m2, during 2003. During this year,

cumulative rainfall was among the lowest 10% across the data set. When plotting

the mean monthly stream flow (Figure 4.2) for the period of the data set the flow

shows to peak in the winter months, falling close to zero in the summer. The black

error bars on this plot show the 95% confidence intervals for each month.
5See Appendix A
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FIGURE 4.2: Bar plot of mean monthly stream flow from 1940 to 2008

FIGURE 4.3: Bar plot of mean monthly rainfall from 1940 to 2008
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Rainfall and stream flow are shown to move together over the period of a year.

A full time series of both stream flow and rainfall show this over the whole period.

For the purpose of this project, a particular focus will be placed on exploring the

seasonality. A first step to exploring this, would be through visualisation techniques

showing the cycle of the time series (Figure 4.5) as well as the autocorrelation func-

tion plot (Figure 4.6). The cyclic activity of stream flow is easily seen in Figure 4.5

with a seasonal cycle spanning of a single year. Time series of daily, weekly, and

monthly discharges belong to the characteristic pattern of time series in which the

process level is assumed to vary cyclically over time. For this reason we have de-

cided to use harmonic regression or regression with trigonometric (Fourier) terms to

model the seasonal variations in rainfall and runoff separately. Here, a brief theoret-

ical description of the model used will be presented.

Given a time series of n observations, the Fourier representation is the set of q

orthogonal trigonometric functions shown below:

yt =
q

∑
i=1

(aicos2π fit + bisin2π fit) + et, (4.1)

estimated by:

ŷt =
q

∑
i=1

(aicost2π fit + bisin2π fit), (4.2)

where q = n/2, ai =
2
n ∑n

t=1 ytcos2π fit, bi =
2
n ∑n

t=1 ytsin2π fit



Chapter 4. About The Data 47

FIGURE 4.4: Showing the full time series of the stream flow data

FIGURE 4.5: Showing the full time series of the stream flow data
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FIGURE 4.6: Autocorrelation function plot of stream flow

4.2.3 Pre-Processing and Normalisation

As with any real world data, some sort of cleaning needed to be done. A series

of preprocessing took place to get the data into useful format. Problems included

uneven time intervals for weekly rainfall data, as well as missing values spread

throughout. Some dates were repeated and others were as extreme as two years

apart. A first step to the solution was to find subsets of the data where only mi-

nor problems of few missing dates existed. It was also necessary that these subsets

had both stream flow and rainfall corresponding data available. The first subset

was taken from 1944 to 1989 with the second from 1991 to 2008. Data values were

then assigned to equally spaced time intervals, which resulted in a loss of a few

observations. The number of lost observations was negligent relative to the size

of the dataset. Both sets of rainfall and stream flow data consisted of missing val-

ues, thus imputation techniques which deal with data exhibiting strong seasonality

were used. The na.seasplit function from the R package imputeTS (Moritz and

Bartz-Beielstein, 2017) was used. The imputation algorithm splits the data sets into

seasonal slices and then perform interpolation on each of these slices. The algorithm

then put each of the imputed slices back together maintaining the sequence of ob-

servations to produce the complete dataset. In order to build the model on weekly

data, the stream flow had to be aggregated from hourly time steps. The weekly
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stream flow data was taken as a sum of all hourly data for that week. Event based

rainfall was also provided for a different, yet close by gauge. This event based rain-

fall consisted of the days rainfall occurred and the total rainfall for that day as the

data value. The missing dates in this dataset simply meant that no rainfall occurred

on those days.

Normalization or the standardisation of both input and output data is an impor-

tant procedure in ANN modeling due to the influence it has on the convergence of

the system. The activation or transfer function squashes the outputs from the net-

work to be constrained in the range 0 to 1. For proper convergence, the scaling of

the data should match the range of the activation function. The observed data, be-

ing outside this bounded range has to therefore be normalised or rescaled such that

it falls within this bounded range. This will avoid the saturation effect caused by

the activation function during the analysis Devia, Pa, and Sa (2015). Theoretically,

is isn’t strictly necessary to normalise the data beforehand. The reason is that any

rescaling of an input vector can be effectively undone by changing the correspond-

ing weights and biases, leaving the exact same outputs as before. However, there

are a variety of practical reasons why standardising the inputs can make training

faster and reduce the chances of getting stuck in local optima. Also, weight decay

and Bayesian estimation can be done more conveniently with standardized inputs.

Our data has, therefore, been normalised before the training begun, then de-

normalising at the output nodes. This was done using the following:

XtNORM =
Xt − X̄t

S
, (4.3)

where X̄t is the sample mean and S is the sample standard deviation.
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Chapter 5

Results and Discussion

This chapter deals with the application and performance evaluation of the different

artificial neural network models, developed for simulation of stream flow for the

Jonkershoek catchment in the Western Cape. The different architectures were com-

pared on both weekly time steps (1941-1991) as well as daily time steps (1941-2008),

due to reasons described in Chapter 4 above.

5.1 On The Weekly Data

5.1.1 Performance of Feed-Forward neural networks(FFNN)

Data was split in the ratio 70:15:15 corresponding to a training set, validation set and

testing set respectively. Since our data set consisted of 2394 observations we decided

that 70% of the data would be reserved for the purposes of training the model. We

found that this proportion allowed the model to capture the patterns in the data

whilst leaving enough data to allow for reliable testing results.

The simplest FFNN model was first fitted, using current rainfall as the only in-

put with current stream flow as the output. In order to efficiently search the dif-

ferent hyperparamters of the models, the h2o.grid function from the h2o (LeDell

et al., 2018) package was used. This function searches through several user defined

hyperparameters of the deep learning model, reporting different performance met-

rics of each combination of hyperparameters. The number of hidden layers was

restricted to be at most two, as it is reported that ANN with single hidden layer hav-

ing sufficient number of neurons can approximate any complex non-linear function

to an acceptable degree. Upon analyses of the grid search, a communality in the

best models with respect to the activation functions, was noticed. These were seen

to be the hyperbolic tangent functions (Section 3.3.2), the ReLU (Section 3.3.3), and
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the maxout functions, all with drop out. We therefore decided to perform a further

grid search, only varying the activation functions between the three aforementioned

functions whilst introducing new values for the other parameters. This was in an ef-

fort to decrease computational time. The results of the final grid search, summarized

in Table 5.1, indicate a network architecture with a Rect f ier With Dropout activation

function and a single hidden layer containing 3 nodes.

Activation Function No. Hidden nodes l1 RMSE
1 Rectifier With Dropout [3] 10−7 0.9621951
2 Tanh With Dropout [3] 0.001 0.9629804
3 Max With Dropout [2,3] 0.001 0.9634146
4 Max With Dropout [3] 0.001 0.9635529
5 Tanh With Dropout [3,3] 0.001 0.9635612

TABLE 5.1: Best five feed forward neural network models based on
validation RMSE, with current rainfall as the only input

The RMSE was observed to be marginally different between the best five models,

with a range of 0.002. Furthermore, it was seen that the simpler models performed

better. We proceeded using the best model to predict stream flow using the testing

data. Running the testing dataset through our selected model we obtain a RMSE of

0.862. This value is lower (better) than that of the validation data and the training

data. A possible explanation for this is that the testing data did not have to learn to

patterns that the training data had to optimize. A plot of the predicted stream flow

(red) against the actual stream flow (black) is presented in Figure 5.1. In analysing

the plot, it is clear that the model does not perform well in predicting the stream

flow as the strong seasonality is not accounted for by the predicted values. It is

worth stating that the RMSE has little meaning as of yet as we do not have anything

to compare it to. This RMSE will thus be used as a base, above which is considered

a bad fit.
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FIGURE 5.1: Prediction plot of the FFNN using current rainfall as the
only input

As stream flow is a function of current rainfall, historical rainfall and histori-

cal stream flow, we first decided to add lagged rainfall variables to the model to

see the impact of historical rainfall on stream flow prediction. The same procedure

was followed as in the case of the first model above, except for the selection of the

number of lagged rainfall variables to include in the model. By trail and error we

found that including five rainfall lags (previous five weeks rainfall data) as well as

current rainfall as inputs to the model resulted in a significant decrease in RMSE. A

greater number of lagged rainfall variables resulted in marginal decreases in RMSE,

carrying the cost of time to create them. The sophisticated grid search yielded the

best model using a ReLU activation function with three nodes in both the first and

second hidden layers. This model produced RMSE values of 0.587 for both the val-

idation and testing dataset. An improvement of 0.375 on the testing dataset may

indicate that the lagged rainfall is of great importance in predicting current stream

flow. This was explored through means of variable importance using the Gedeon

method (Gedeon, 1997), which considers the weights connecting the input features

to the first two hidden layers. The prediction plot of the new model, shown in Figure

5.2, displays the improvement on predicting the stream flow. Now, the model is able

to effectively pick up the seasonal patterns of the data. The variable importance plot

shows that the lagged variables (coded as r2 is rainfall two weeks previous) are of

relatively more importance than current rainfall. This observation is in line with our

expectations on the storage of the catchment area.
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FIGURE 5.2: Prediction plot of the feed forward neural network in-
cluding five lagged rainfall variables

FIGURE 5.3: Variable importance plot of FFNN with current and
lagged rainfall as inputs

To see if we could further improve this models performance, we assessed the ad-

dition of lagged stream flow variables as input. When assessing the autocorrelation

function of the time series data of stream flow, it was seen that the lagged stream

flows are correlated with the current stream flow, as was expected. This model will
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build on the model consisting of five lagged rainfall variables. We used the same

procedure to determine the number of stream flow lags to include. A better model

was produced with the addition of eight lagged stream flow variables. Performing

a grid search on this configuration yielded an optimized model using a hyperbolic

tangent activation function with two nodes in the first hidden layer and three nodes

in the second. This model produced an RMSE value of 0.577 for both the validation

and testing dataset. This is a further improvement of 0.1 from the previous model,

which is an indication that current stream flow is not only dependent on historical

rainfall but also historical stream flow. Again, this was assessed using measures of

variable importance described above. The prediction plot looks very similar to the

one above, however we know that the predictive accuracy is slightly better from

the lower RMSE. The variable importance plot in Figure 5.5, shows the high relative

importance of lagged stream flow at lag two (two weeks previous), thus justifying

the inclusion of lagged stream flow in the model. An interesting result is seen when

stream flow eight weeks ago is of higher importance than current as well the the first

two lagged rainfall variables.

FIGURE 5.4: Prediction plot of the FFNN on weekly data with both
lagged rainfall and lagged stream flow as inputs
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FIGURE 5.5: Variable importance plot of the updated

It is clear that the lagged variables play an important role in the prediction of

stream flow, with these variables being relatively more important than the rainfall at

the time of the observed stream flow, according to Gedeons measure. This, therefore,

sets up the notion for the use of RNNs on the proposed problem.

5.1.2 Performance of simple Recurrent neural network(RNN)

The RNN and LSTM models were developed using the keras package (Allaire and

Chollet, 2018), which connects to the R TensorFlow backend. Through trial and error,

a total of 30 epochs showed to give best results without over-fitting the data.

The validation method used to implement our RNNs was different to that of

the FFNN. The implementation of validation methods required development of a

back testing strategy which involves splitting the data into slices of uninterrupted

overlapping shifted windows that can be tested for strategies on both current and

past observations. Time series, as preserved in RNNs, is a bit different than non-

sequential data when it comes to cross validation. Specifically, the time dependency

on previous time samples must be preserved when developing a sampling plan. The

strategy is comparable to that which is implemented in financial regression prob-

lems. A recent development is the rsample package (Kuhn and Wickham, 2017),
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which makes cross validation sampling plans very easy to implement. Furthermore,

the rsample package has backtesting covered.

Each sliced was split into training and testing datasets in the ratio of approxi-

mately 80:20. The size of each slice is governed by the size of the training and test-

ing datasets as well as the skip between windows (the number of time steps which

the window is shifted by). Given these governing variables the we found, through

experimentation, the appropriate slice size consists of 38 years of training data and

7.5 years of testing data, with a skip between windows of 1 month, ultimately di-

viding the dataset into 6 equal slices. We found that when the training and testing

datasets were too small, the model was not able to fully pick up the patterns in the

data. We first used a back testing strategy with a nine smaller slices of 12 years each

with a skip span of four years. The division of the total data set into slices is shown

in Figure 5.6, and each slice is clearly presented in Figure 5.7 The predictions using a

different back testing strategy with a smaller testing data size and a skip step of four

years produced an average RMSE of 0.771 as shown in Figure 5.8, with some slices

performing significantly better than others. The prediction plot for the middle slice

(slice 5) is shown in Figure 5.9. This is a higher RMSE than the best model produced

in the FFNN, however it can be directly attributed to the size of each slice. To be able

to compare the model effectively and fairly to the FFNN, a larger training data set

was used. A clear visualisation of the newer (larger sized slices) back testing strat-

egy is presented in Figure 5.10. For the RNN, we will select and visualise the split of

the middle slice (Figure 5.11).
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FIGURE 5.6: Back testing strategy for the RNN for slices of 12 years
each

FIGURE 5.7: Back testing strategy for the RNN for slices of 12 years
each zoomed in for clarity
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FIGURE 5.8: Prediction plots of each slice of RNN model

FIGURE 5.9: A better look at the middle slice prediction plot



Chapter 5. Results and Discussion 59

FIGURE 5.10: Showing the training and testing splits of the middle
slice of the larger-sized slice back testing strategy

FIGURE 5.11: Showing the training and testing splits of the middle
slice
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FIGURE 5.12: A clear view of the middle slice prediction plot using
the larger-sized slice back testing strategy for the RNN

The RNN model was developed using the keras package (Allaire and Chollet,

2018), which connects to the R TensorFlow backend. Through trial and error, a total

of 30 epochs showed to give best results without over-fitting the data. In assessing

the prediction of all slices of larger sizes, the mean RMSE for all the slices was 0.435.

This is a slight improvement over the best model of the FFNN architecture. This is

a great improvement over using smaller sized slices in the back testing strategy. It

is thus clear that the size of the training data plays a significant role in model per-

formance. Figure 5.12 shows the predictions against the observed values of stream

flow for the RNN, proving to sufficiently predict points very close to their observed

value. The effective seasonality was picked up by this model. The major advantage

seen over the FFNN was that the need to create and determine the number of lagged

variable became obsolete as this process was directly done in the model architecture

of the RNN. We now want to assess whether this model can be further improved by

means of the LSTM architecture.

5.1.3 LSTM

The same back testing strategies were used to assess the performance of the LSTM

model. On the first (smaller sized slices) back testing strategy, the model was seen

as improvement over the RNN with the same back testing strategy. Again, we show
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all the slices (Figure 5.13), zooming in on the fifth slice for ease of viewing (Figure

5.14).

FIGURE 5.13: Showing the predictions of the LSTM of each slice using
the smaller-sized slice back testing strategy

FIGURE 5.14: A clear view of the middle slice prediction plot using
the smaller-sized slice back testing strategy for the LSTM

An average RMSE across all the slices was calculated to equal 0.589. This is an

improvement of 0.182 from the traditional RNN when using the same back testing

strategy. Furthermore, when assessing the fifth slice, the RMSE of this slice for the
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LSTM was much lower, at a value of 0.1 as opposed to 0.546. There were, how-

ever, some slices that were greater than the RNN. This RMSE for the LSTM is still,

however, higher than that found in the best model of the FFNN architecture. As

explained above, this could be directly attributed to the size differences in the train-

ing data sets. We, therefore, used the second back testing strategy described above

which splits the data set into larger slices skipping only one month between each

slice. Figure 5.15 shows the third or middle slice prediction plot of this larger sized

slice back testing strategy. Predicted points are seen to closely follow those observed,

with some exactly the same. When training on a larger sized data set for each slice,

the LSTM was seen to perform very well with an average RMSE across all slices of

0.266. The predictions on the first slice produced an RMSE of 0.023. Between the

different back testing strategies used, a decrease of 0.323 was seen when training on

a larger data set. Again, the size of the training data and the back testing windows

made a significant difference in the performance of the model. An important obser-

vation is made when assessing the sixth slice of the smaller sized slice back testing

strategies. For both the RNN and the LSTM, the models performed relatively poorly

on this slice.

FIGURE 5.15: A clear view of the middle slice prediction plot using
the larger-sized slice back testing strategy for the LSTM

After assessing the data in this slice carefully (somewhat visible if Figure 5.10),

it was noticed that the testing data set contained outliers which we do not expect
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the model to pick up. The problem of the size of the training sets was thought to

be improved by adding more data point through using daily data. We do, however,

hypothesis that the RMSE could be slightly higher for daily data points as there is

more room for error.

5.2 On The Daily Data

5.2.1 FFNN

5.2.2 RNN

When working with the data provided in daily time intervals, similar back testing

strategies were developed. We first adopted one which split the data set into nine

equal slices consisting of 12 years each with a window shifting four years each slice.

The data was then split into six equal slices with a one month shift in the window.

The major difference between the two strategies being the size of the data sets in each

slice. It is not necessary to show the back testing strategies again as they are the same

as those used on the weekly data, however now using the daily format. First, assess-

ing the traditional RNN model using the back testing strategy with smaller slices,

an average RMSE of 0.88 was recorded across the different slices. For visualisation

purposes, we show the middle slice prediction plot in Figure 5.16. The increased

number of points is clearly seen, and the prediction plot shows that the RNN model

performs well on the data set, picking up the seasonality very well. When chang-

ing the back testing strategy to allow more data for the model to train on in each

slice, the average RMSE amoung the slices decreased to 0.667. The middle slice is

shown for this in Figure 5.17. This shows how the model predicts the seasonality in

the stream flow very well almost to the exact time. The problems are only seen in

predicting the outliers, as the model is not entirely accurate in this.
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FIGURE 5.16: A clear view of the middle slice prediction plot using
the smaller-sized slice back testing strategy for the RNN on daily data

FIGURE 5.17: A clear view of the middle slice prediction plot using
the larger-sized slice back testing strategy for the RNN on daily data

5.2.3 LSTM

As with the weekly data, the same back testing strategies used on the RNN were

used for the LSTM for the daily data. On the first back testing strategy, the LSTM
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model outperformed the traditional RNN. A single slice of the predictions are shown

in Figure 5.18. The average RMSE over the entire testing period was 0.47. This slice

in particular had a higher RMSE than the same slice of the RNN model. Some slices

had RMSE’s as low as 0.14 and others as high as 0.7.

FIGURE 5.18: A clear view of the middle slice prediction plot using
the larger-sized slice back testing strategy for the LSTM on daily data

FIGURE 5.19: A clear view of the middle slice prediction plot using
the larger-sized slice back testing strategy for the LSTM on daily data
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5.3 Validation of Models

5.4 Evaluation of Relative Performance
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Chapter 6

Summary and Conclusion
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Appendix A

Davis Tipping Bucket

Technical report on calibration of Davis Tipping bucket rain gauges in Jonkershoek

– November 2013 By Abri de Buys

A.1 Background:

SAEON Fynbos Node has operated a set of ten Davis Instruments tipping bucket

rain gauges since 20 June 2011 in Jonkershoek. Davis Instruments’ Quality Assur-

ance Statement claims that their rain gauges are accurate to within±4% of the actual

rainfall amount. We initially installed these gauges straight out of the box because

we were satisfied with this level of accuracy. It is routine for instruments to be cal-

ibrated from time to time to ensure their long term accuracy. To this end we have

been in touch with Davis Instruments to source information on proper calibration

methods recommended by them. It should be noted that whenever the issue of

calibration was raised with Davis Instruments Tech Support, their replies have been

that a) the instruments are factory calibrated and therefore do not need re-calibration

or b) that one could set up a paired rain gauge experiment over the course of sev-

eral rain storms and compare the Davis gauges to that of a standard manual gauge.

However, the Davis rain gauges do come with adjustable set screws that can be used

to change the volume of water required to tip the gauge. Our rain gauges were due

for a calibration test, having been in operation for just over two years. Since other

users of the same type of rain gauge (Ferozah Morris and Cobus Pretorius of UKZN)

recently raised concerns over the accuracy of some Davis rain gauges, we decided

to investigate the accuracy of our Jonkershoek rain gauges in November 2013 and to

calibrate them if necessary. This report includes details about the instrumentation,

calibration method, calibration results and a calibration protocol. Instrumentation
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and calibration method: Tipping bucket mechanism and adjustments The Davis In-

struments tipping bucket rain gauge (Part # 7852) has a funnel diameter of 16.5cm

giving it a catchment area of 213.82 cm2. The tipping bucket mechanism itself con-

sists of two compartments (Figure ) that operate a switch when they tip under the

weight of water entering through the funnel. The data logger software then trans-

lates this “tip” into a data record of 0.2mm of rainfall. The tipping compartment

mechanism rests on set screws (Figure ) that can be adjusted to increase or decrease

the weight (and thus volume) of water required to initiate a tip. In order to increase

the tip volume, the set screws are turned downwards into the gauge platform/base,

dropping the resting place of the tipping mechanism lower. In order to decrease the

tip volume, the set screws are turned out of the gauge platform, lifting the resting

place of the tipping mechanism upwards. It is immediately obvious that to ensure

the 0.2mm recorded by the data logger actually represents 0.2mm of rainfall on a

213.82cm2 area we need to ensure the mechanism tips at the correct fill volume. In

order to do this, the set screws must be in the correct position.

A.2 Calibration Options:

We sourced calibration methods from other manufacturers of tipping bucket rain

gauges. A laboratory based method to calibrate rain gauges involves dripping a

known volume of water (KVW), say 500ml, through the gauge, counting the number

of tips and then calculating the average volume of water per tip. The formula used

for this is:

Volume per tip =

KVW
Area of Gauge

number of tips
× 10 (A.1)

An alternative, field based method for calibration is to slowly pour a known vol-

ume of water into the gauge using a burette and recording the volume required to

make the compartment tip. After several samples the average tip volume is calcu-

lated and any necessary adjustments made before the process is repeated to check if

the desired result was achieved. We used the formula for the first method to calcu-

late the volume of water that represents 0.2mm (one tip) on an area of 213.82 cm2. In

other words we solved the equation for KVW:

0.2mm =
KVW
213.82

1
× 10 (A.2)
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Therefore: KVW = 4.276ml We rounded this value up to 4.28 ml and attempted

to set our tipping compartments to tip as close to this volume as possible.

A.3 Method:

We decided to use the field based method using a burette because we wanted to

avoid removing the rain gauges from the field and creating gaps in our data. We

also did not have the equipment required to slowly and precisely drip a large vol-

ume of water through the gauge in the field or lab. We used a 10 ml burette with

0.05 ml graduations. When first testing the technique it was found that the Davis

tipping bucket compartments can sometimes tip at a much lower volume than 4.28

ml, even after adjusting the set screw as low as it can go (increasing the tip volume to

the maximum). It was thus impossible to do the calibration by setting both compart-

ments to tip at 4.28 ml as would have been ideal. Instead we aimed to get an average

tip of 4.28 ml across both compartments, so that the rain gauge on average records

0.2 mm per tip even though one tip may actually represent slightly higher and one

slightly lower amounts of rain. This often meant adjusting one compartment to tip

at a volume larger than 4.28 ml if its partner could not be adjusted to tip at a large

enough volume. Despite this inconsistency across tipping compartments, we still

aimed to get each compartment as close to 4.28 ml as possible and only adjusted

compartments away from 4.28 ml if the partner compartment necessitated compen-

sation. Typically the first 4-5 samples per compartment would be a clear indication

that the compartment needed adjustment. We would adjust the worst compartment

first (average furthest from 4.28 ml after 4-5 samples) and then continue sampling to

measure if the adjustment had the desired effect. To quantify the effect of the calibra-

tion exercise, a “Factory accuracy” was calculated for each gauge from the overall

average tipping volume prior to adjustment. This value reflects the actual amount

of rain represented by the average tip of a rain gauge prior to calibration. Note that

for each tip, an amount of 0.2mm is recorded in the software. In other words, a

rain gauge that tipped at 0.167mm but recorded 0.2mm would have over counted

because to register 0.2mm in the data record it actually required less water than that

which would represent 0.2mm on a surface area of 213.82 cm2 (i.e. 4.28ml).
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