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Abstract
We present an agent developed to participate in a bilat-
eral, multi-issue, time-based negotiation tournament using
Stacked Alternating Offers Protocol (SAOP) with uncer-
tainty of the user’s preference and uncertainty of the oppo-
nent’s preference. The goal was to maximise the user’s util-
ity while minimising the distance to the Nash equilibrium.
We propose a Linear Programming approach to dealing with
user preference uncertainty and a frequency model for deal-
ing with opponent preference uncertainty. The agent was
independently tested against previously achieving agents
and the results from the tournament were analysed which
present a high performing negotiating agent.

Keywords preference uncertainty, negotiation, SAOP,
Linear Programming

1 Introduction
Agent based negotiation is attracting significant attention
from the research community in recent years especially given
the rise of Artificial Intelligence (AI) that promises to auto-
mate most repetitive aspects of our lives [19]. Applications
of automatic negotiation using intelligent agents include Wi-
Fi channel assignment [1], agriculture supply chain support
[10], and e-commerce negotiation [29].

This paper presents a negotiating agent’s design and
strategy for the University of Southampton’s Intelligent
Agents module (COMP6203). The negotiation was run us-
ing the GENUIS framework [17] and consisted of numer-
ous bilateral negotiations using Stacked Alternating Offers
Protocol (SAOP). These negotiations were conducted using
various multi-issue preference domains of different sizes. In
the negotiation tournament setup used for the coursework
there was preference uncertainty. Specifically, the agents
had a ranking of a limited set of outcomes, and no access to
their entire utility function. However, the agent was able to
elicit additional information from a virtual user at a fixed
cost. For each domain, there were two different elicitation
costs; high and low. The agents also had no knowledge of
the preferences of their opponents.

The agent is described in terms of its preference elicita-
tion, opponent model, acceptance strategy and biding strat-
egy. We discuss reasons behind the specific design of the
strategy that our agent employed, and how it compares to
existing approaches as well as present the results from our

testing phase. Finally, we present the results from the tour-
nament with a discussion of possible improvements.

2 Design of the Strategy

When considering the design of the agent’s strategy, one
needs to take much into consideration such as application
and environment in which the agent will run. We present our
agent’s strategy with reasons and comparisons to existing
approaches.

2.1 Preference Elicitation

2.1.1 Theory and Formulation

A major obstacle in the future of representative automated
negotiation is the agent’s level of knowledge about the pref-
erences of the user it represents [2]. Preference elicitation
is a tedious procedure to the users since they have to inter-
act with the system repeatedly and participate in lengthy
queries [26]. With elicitation costs, the agent must strike
a balance between user model accuracy and user interfer-
ence. Many strategies have been proposed [3, 4, 2, 18] but
most automated negotiation research has focused on oppo-
nent preference modeling rather than on the user preference
elicitation, however several techniques in opponent modeling
are of interest [14].

Baarslag et al. (2019) [26] suggested a linear program-
ming approach which was inspired mainly by the work of
Srinivasan and Shocker [25], who proposed a strategy for
estimating the weights of different attributes given a set of
pairwise comparisons of outcomes by using linear program-
ming to dealing with preference uncertainty. Baarslag et
al. (2019) extend this model to propose a different formu-
lation of the problem using categorical data that estimates
complete preference profiles based on the outcome set. The
process used is summarized.

It is necessary to first define the negotiation domain.
During a negotiation, the participants are trying to reach
an agreement over m issues which we denote as I =
{1, . . . . . . ,m}. Every issue, i, is discrete such that each
issue can take a finite number of ni values which we denote
as:

Vi =
{
x
(i)
1 , x

(i)
2 , . . . . . . , x(i)ni

}
. (1)
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The negotiation domain Ω = V1×V2× . . .×Vm is the set
of all possible negotiation outcomes. A negotiation outcome
ω ∈ Ω is thus an m–tuple that assigns a single value ωi ∈ Vi
to every issue i.

2.1.2 A Linear Programming Approach

If an agent is to operate under preference uncertainty, it
needs to formulate a strategy that will be able to derive a
utility function from a set of pairwise comparisons of out-
come. Every user participating in a negotiation has a spe-
cific set of preferences regarding the possible outcomes. A
preference profile is given by an ordinal ranking over the set
of possible outcomes. An outcome ω is said to be weakly
preferred over an outcome ω′ if ω � ω′ and strictly preferred
if ω � ω′, where ω, ω′ ∈ Ω, the negotiation domain. Prefer-
ence profiles can be expressed in a cardinal way through the
use of a utility function such that: ω � ω′ ⇐⇒ u(ω) ≥ u (ω′)

We focus on linear additive utility functions such that
every issue, i’s, value is calculated separately according to
an evaluation function vi as follows:

u : Ω 7→ [0, 1] ⊆ R with u(ω) =

m∑
i=1

wi · vi (ωi) , (2)

where
m∑
i=1

wi = 1. (3)

Here, the wi represent the normalized weights which in-
dicate the importance of each issue to the user, and vi(ωi)
is the evaluation function that maps the ith issue value to a
utility.

Consider a ranking of outcomes O, provided in each ne-
gotiation, such that

O =
{
o(1), o(2), . . . , o(d)

}
, (4)

and the set D of corresponding pairwise comparisons. From
the definition of the utility function, we can integrate the
weight and each evaluator value in one variable and we
rewrite 2 as:

u : Ω 7→ [0, 1] ⊆ R with u(ω) =

m∑
i=1

φi (ωi) , (5)

with φi (ωi) = wi · vi (ωi) . (6)

This gives rise to a new set of discrete variables:

Y =
{
φ1

(
x
(1)
1

)
, . . . , φ1

(
x(1)n1

)
, . . . , φm

(
x
(m)
1

)
. . . , φm

(
x(m)
nm

)}
.

(7)
One more piece of information is needed to formulate the

problem of estimating the utility function as a linear opti-
mization problem with the set Y as the unknown variables.
For each pairwise comparison between outcomes (o, o′) ∈ D,
we derive that:

m∑
i=1

(φi (oi)− φi (o′i)) ≥ 0, with φi (oi) , φi (o′i) ∈ Y.

(8)

We the make the definition:

∆uo,o′ =

m∑
i=1

(φi (oi)− φi (o′i)) , ∆uo,o′ ≥ 0. (9)

Finally, we can translate the above inequalities into a lin-
ear optimization problem. We need to define ‘slack’ vari-
ables, z, such that the number of ‘slack’ variables, zo,o′ , is
equal to the number of comparisons (o, o′) in D.

Now, we are able to formulate the linear program as:

Minimize: F =
∑

(o,o′)∈D

zo,o′ , (10)

Subject to the following:

zo,o′ + ∆uo,o′ ≥ 0, (11)

zo,o′ ≥ 0, for (o, o′) ∈ D, (12)

φi

(
x
(i)
j

)
≥ 0, for i ∈ I, j ∈ {1, 2, . . . , ni} . (13)

The decision variables are Y ∪{zo,o′ | (o, o′) ∈ D}. In order to
avoid the trivial solution to the problem in its current form,
an additional constraint is needed. In our implementation
and that in [26], the additional information is the outcome
of maximum utility for the user, ω∗. This gives rise to one
final constraint for the problem:

u (ω∗) = 1 ⇒
m∑
i=1

φ′i (ω∗i ) = 1. (14)

2.2 Opponent Model

Although achieving a Pareto efficient outcome may be de-
sirable, a negotiation agent has no knowledge of the oppo-
nent’s preferences, nor does it have knowledge of the nego-
tiation strategy. To address this, a wide range of papers
[31, 13, 30, 6, 7, 5, 12] propose algorithms which try to infer
the preferences and negotiation strategies of the opponent.
In terms of additive utility preferences, this means inferring
the weights as well as the utility for individual values for
each issue. Approaches differ in terms of complexity rang-
ing from simple heuristic to machine learning approaches.
Our agent has made use of a similar technique used by the
Hardheaded agent [28] which uses a frequency modelling ap-
proach.

2.2.1 Hardheadedness

Frequency approaches generally model the opponent’s pref-
erences by adding the frequency of issue values and the fre-
quency of updates in the issues of the offered bid, without
looking at a specific set of hypotheses [27]. We took this
approach and used it to determine how hardheaded an op-
ponent agent is. This is used to avoid not reaching an agree-
ment with agents that concede very slowly which results to
lower agreement rates. The variable h represents the hard-
headedness and its value will range from 0 to 1.

The hardheadedness is calculated by:

h = 1− freqIssueV alueUpdate

totalIssues ∗ totalTurns
. (15)
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2.2.2 Weight of Issues

To calculate the weight of issues, the approach used by the
Jonny Black [31] agent was implemented. Using this ap-
proach it is assumed that the probability is relatively small
for an opponent to change from its preferred option for is-
sues with greater importance. We used the Gini Index [20]
as the impurity measure similar to the Jonny Black agent.
Issues with bigger Gini-Impurity scores are weighted more
by the opponent.

The weight of issues is calculated by:

ŵ =
∑ frequencyOfIssue2

totalTurns2
. (16)

With the calculated ŵ, the weight is normalised by di-
viding the unnormalised weight by the total unnormalised
weight:

w =
unnormalisedWeight

totalUnnormalisedWeight
. (17)

2.2.3 Evaluation of Issues

We took a simple heuristic approach to find the evaluation
of issues by using the frequency analysis approach. This was
done by setting the issue’s evaluation equal to the issue value
divided by the issue value with the maximum frequency in
the history bid. The variable e is used to represent the
evaluation of an issue.

The evaluation of an issue is calculated by:

e =
issueV alue

issueV alueMaxFreq
. (18)

2.3 Acceptance Strategy
This agent combines three acceptance conditions to devise
an acceptance strategy:

1. ACconst(α): the agent accepts the opponent’s bid if it
is higher than the target utility.

2. ACnext(α): the agent accepts the opponent’s bid if the
utility is higher than the utility of its own proposed bid.

3. ACtime(α): the agent accepts the opponent’s bid after
a predetermined amount of time.

Cao and Dai (2014) [22] clarify the shape of the concession
curve for classic Boulware and Conceder tactics. They fur-
ther propose a simplified Boulware utility acceptance strat-
egy:

ACconst(α) =
log (tleft)

c(t)
+Ka, (19)

where tleft = min(t,T max)
Tmax .

The numerator expresses the normalised amount of time
left. The denominator c(t) acts as a conceding factor that
governs the concession rate, and Ka determines the mini-
mum starting utility; both constants will be discussed in the
next section.

Equation 20 shows a variant of ACtime(α) we imple-
mented. It factors in a hardheadedness value of the op-
ponent h and the amount of time that is left in the negotia-
tion. Once 90% of the negotiation time has passed, the value
of c(t) is decreased to slightly concede. If the opponent is

Avg Util Avg Dist to Pareto Avg Dist to Nash
0.72631 0.05554 0.24012

Table 1: Average Distance and Utility

rather hardheaded, the value of c(t) is further reduced. By
doing so, we increase the likelihood of reaching an agree-
ment.

c(t) =

 13 if 0.1 < tleft ≤ 1
10 if 0 < tleft ≤ 0.1 ∧ h ≤ 0.6
7 if 0 < tleft ≤ 0.1 ∧ h > 0.6

(20)

2.4 Bidding Strategy

It is common for agents to offer their maximum utility at
the start of negotiations while it builds an opponent model
and searches the outcome space [8]. Furthermore, doing this
allows for finding bids near the Nash equilibrium. The agent
implements this strategy by offering a bid that maximises
its own utility for the first 20% of the time.

Every 10 rounds, the agent recalculates the Nash product
with the best saved bids from the opponent. This increases
the accuracy of the opponent model as it takes into account
new offers.

Each round, the agent generates 100 bids above the target
utility from ACconst(α). The bid with the best Nash product
is kept in a bestGeneratedBids array. As soon as the array is
full, the worst bid in the list is replaced by the best generated
bid if its Nash product is higher.

Because the opponent model is a mere approximation and
is used to calculate the Nash product, a top five bid from
the array is randomly selected and offered.

3 Testing
After creating the design and strategy, we tested our agent
against ten other agents. Most of the agents we negoti-
ated with competed in the ANAC2015 competition such as
CUHKAgent2015 [23], Atlast3 [21], AgentH [11], AgentX
[9], JonnyBlack [31], ParsAgent [15], PhoenixParty [16] and
PokerFace [24].

The negotiation setup was configured the same way as
the competition. It was time based, with each negotiation
lasting 90 seconds but the domain used for testing was the
party_domain. Our agent received the highest utility when
negotiating with the ConcederNegotionParty and ParsAgent
with a utility of 0.90 from both agents and the lowest with
CUHKAgent2015 and PhoenixParty with a utility of 0.32
from both agents. Even though the performance wasn’t that
good when negotiating with CUHKAgent2015 and Phoenix-
Party it was observed that our agent performed well in most
negotiations. In Table 1, it can be seen that our negotia-
tions achieved an average utility of 0.73, average distance to
Pareto of 0.06 and average distance to Nash equilibrium of
0.24. The table containing the full test results can be found
in Appendix A.

4 Results
To evaluate the performance of this agent in the compe-
tition, we will analyse different measurements. The agent
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competed in four domains of different sizes: SportHal (SH)
with 243 offers, Party with 3072 offers, WindFarm (WF)
with 7200 offers, and Energy with 15625 offers. For each
domain as well as overall, we will consider the number of
agreements, the obtained utility, and the distance to Nash
equilibrium.

Overall, the agent performed very well and scored among
the best. We obtained an agreement rate of 99.4%, an aver-
age user utility of 0.86, and a distance to Nash equilibrium of
0.17. Unfortunately, we discovered that a very small amount
of null pointer exceptions occurred during the tournaments.
Resolving this issue would result in an even closer to optimal
agreement rate.

In Table 2, the agreement rate across the various domains
is displayed. We can observe that the agreement rate is
generally very high. However, as the size of the domain in-
creases, the agreement rate slightly decreases. In fact, in the
largest domain, we obtained a rate of 98.45%. Nevertheless,
this percentage reflects the fact that the agent does an ex-
cellent job at finding an offer that provides a good utility
for its opponent and itself.

SH Party WF Energy Total
Agreements 1840 1840 1803 1649 7132
Total 1840 1840 1820 1675 7175
Percentage 100% 100% 99.07% 98.45% 99.40%

Table 2: Agreement Rate per Domain

Figure 1 and 2 respectively show box plots of the obtained
utility and distance to Nash equilibrium for each domain.
We immediately notice that the highest performance is ob-
tained in the smallest domains. This is not a surprise; the
bigger the domain, the more effort that is required to esti-
mate the user and opponent model. However, the agent was
able to withstand the more larger domains too.

In the smallest domain, ShortHal, we obtained a median
user utility of 0.98 and a median distance to Nash equilib-
rium of 0.06. This high accuracy is obtainable because it
is easy to explore the outcome space and identify bids near
the Nash equilibrium. In medium-sized domains Party and
WindFarm, the agent achieved a user utility of 0.86 and
0.85, and a distance to Nash equilibrium of 0.1 and 0.11 re-
spectively. In the Energy domain, we obtained a user utility
of 0.82 and distance to Nash equilibrium of 0.31. Especially
the distance to Nash is notably off in this domain. Aside
from the increased difficulty to explore the outcome space,
this is partly caused by the hardheaded nature of the agent.

In general, the agent performed exceptionally well and
ranked within the top five in the competition. Even though
the performance reduced as the domain size increased, the
agent found an excellent generic approach to cope with dif-
ferently sized domains.

5 Discussion
Although the agent performed well in the tournament, im-
provements could still be implemented.

From the tournament logs, we concluded that our agent
runs into a null pointer exception in very rare occasions,
namely 40 out of 7175. The first essential improvement
would be to find what causes this and resolve it. By do-
ing this, we would steadily improve our agreement rate.

Figure 1: Box Plots of User Utility per Domain

Figure 2: Box Plots of Distance to Nash Equilibrium per
Domain

Furthermore, even though the agent did not run into time-
outs, our offering strategy is very computationally expensive
as it generates 100 bids every round. To increase efficiency
and prevent the agent from having timeouts in larger do-
mains, an alternative for the random bid generation should
be sought. We thought about this during the development
of our agent, but could not find an ideal solution.

A suggestion closely related to the subject above is the
bestGeneratedBids array. Over time, we could reduce the
size of this array instead of keeping it fixed at 100. This
would reduce the time needed to search the outcome space
and lower the effort to sort the list on utility value. However,
this could potentially impact our accuracy and ability to
offer the right bids, and given that our agent did not have
timeouts, we made the right decision not to do so—in this
tournament setup.

6 Conclusions

It is challenging enough to design an agent to negotiate on
behalf of a user, but when dealing with preference uncer-
tainty of both the user and the opponent, the problem be-
comes highly nontrivial. This agent made careful use of
Linear Programming and a frequency model to deal with
this uncertainty and proved to, together with the accep-
tance and bidding strategy, maximise user utility and min-
imise the distance to Nash equilibrium. Matthew De Vries
focused on the preference elicitation while Steven Ball fo-
cused on the opponent modeling and Brent De Hauwere on
the acceptance and bidding strategy.
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Appendix A

Agent Distance to Pareto Distance to Nash Agent 1 Utility Opponent’s Utility
BoulwareNegotiation 0.02069 0.10210 0.83564 0.84008
ConcederNegotiation 0.00000 0.02446 0.90415 0.78511
CUHKAgent2015 0.11743 0.61448 0.32010 0.87024
Atlas3 0.13180 0.41521 0.51782 0.84521
AgentH 0.14737 0.18412 0.85954 0.61410
AgentX 0.02069 0.04271 0.88767 0.77259
JonnyBlack 0.00000 0.14492 1.00000 0.65867
ParsAgent 0.00000 0.02446 0.90415 0.78511
PhoenixParty 0.11743 0.61448 0.32010 0.87024
PokerFace 0.00000 0.23430 0.71389 0.87856
Average 0.05554 0.24012 0.72631 0.78353

Table 3: The negotiation test results with different agents.
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