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What do machines see? Utilizing 
artificial intelligence to explore 
cell biology

With our ability to take and quantify numerous complex images of cells and cell populations, the 
ability to paint an accurate picture of the underlying data has never been more valuable. Deferring 
from the contemporary classics in data visualization to methods that exploit advances in artificial 
intelligence is an essential step in understanding high-throughput, three-dimensional microscopy 
data. This feature article discusses how generating or simulating representative cells that may not 
exist in the data set, yet summarize the underlying distribution, allows researchers to effectively and 
efficiently analyse cellular morpho-dynamics. Furthermore, learning from these artificial intelligence-
based techniques allows us to ‘see what the machine is seeing’ in a step towards unpacking the chaos 
of cell biology to understand the very fundamentals of living organisms.

Matt De Vries and Chris 
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Data Visualization

Visualizing phenotypic occurrences in 
high-throughput experiments

Cell biology is founded on the principle of ‘seeing 
is believing’. Due to this natural essence, examining 
the images themselves has historically been involved 
in the presentation of microscopy-based data. With 
developments in computer vision, we can now extract 
a plethora of information from images. However, as the 
volume and depth of images that can now be generated in 
single experiments continues to grow, the availability of 
techniques to effectively analyse phenotypic differences 
decreases.

With our ability to take and quantify more images, 
the ability to paint a clear and accurate picture of 
the underlying data has never been more valuable. 
Visualization delivers data in the most efficient way 
possible. As an essential step in the scientific process, 
data visualization takes raw data, models it through 
varying mathematical methods and delivers it so that 
conclusions on trends, patterns and outliers within large 
sets are more easily comprehensible.

Visualizing image data

Contrary to intuition, data visualization of image 
data is non-trivial. Raw image data does more to 
ask questions than guide scientists through the full 
‘picture’ (Figure 1a). This becomes even more apparent 
when adding volumetric and time dimensions to 
make 3D movies of objects or multiple objects. In 

particular, humans are more so concerned with smaller 
components of larger structures in images. These 
may include facial expressions in pictures of several 
faces, analysing human gait as a biometric in low-
resolution CCTV footage, and subcellular structures 
in cell communities (Figure  1b). These complex 
characteristics of imaging data require visualization 
techniques beyond the contemporary classics.

In addition to new abilities to image more cells at 
higher resolutions, computer vision technologies now 
allow us to quantify different aspects of the image. 
Such methods turn images into numbers and have 
important consequences on how data visualization is 
performed. Quantifying and presenting fundamental 
features of cell morphology were pioneered in fixed-
cell assays and extended to live-cell dynamics. A 
common theme has been to use these raw features to 
build computational models to study the distribution 
and group phenotypes.

We may then visualize these groups by generating 
representative cells for each. This has been done 
through classical machine learning methods as well 
as deep learning. An additional dimension to the data 
increases complexity exponentially. In fact, we learn 
from Pólya’s recurrence Theoremi that it is very easy 
to get ‘lost’ in 3D. We may extend some of the basic 

i Pólya’s recurrence theorem states: a simple random walk on 
a d-dimensional lattice is recurrent for d = 1,2 and transient 
for d >2. This means that a random walk done in 2D ensures 
recurrence with 100% probability. A random walk done in 3D 
only ensures recurrence with roughly 34% probability. This has 
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features commonly used in 2D assays to 3D; however, 
they may not be exhaustive. On top of predefined 
features to represent data, we are able to learn abstract 
features through deep learning. These are common 
problems in computer vision tasks where classes are 
relatively rudimentary. Modelling and representing 
data that follow distributions far more convoluted 
allow researchers to be guided by technological 
advances.

Deep learning and visualization

Deep learning techniques have made an inherent 
impact on computer vision tasks and – due to the central 
role of imaging – biological sciences. Previously, these 
techniques have been used as ‘black-box’ methods. 
However, in tasks where the question of ‘why’ matters 
most, substantial explainability needs to be considered. 
These algorithms aim to model distributions in and of 
multiple images, obtain abstract features and simplify 
complex correlations. Importantly, these algorithms 
are capable of exploring intricate data in a much more 
efficient and effective way than humans. Ultimately, 
scientists want to know why these methods work so 

more pure mathematical value than that of qualitative visual-
ization, but allows insight into how dimension greatly affects 
complexity.

well and learn from them. What are these algorithms 
‘seeing’?

Simulating and representing cell 
populations

Simulation allows us to visualize data that follow 
specific rules and directly change features to understand 
their impact. Early simulations aimed at exploring 
fundamental biological processes as well as the hallmarks 
of cancer. Using these models, we can visualize and even 
digitally manipulate cell behaviour. Understanding 
large datasets containing thousands (or millions) of 
heterogeneous cells with multiple phenotypes may be 
done through exploring a few representative or exemplar 
cells. These cells may not actually exist in the dataset but 
are characteristic or provide more contextual information 
(Figure  2). One may view these representative cells of 
complex image datasets similar to summary statistics of 
more simple tabular datasets.

We may also make use of explainable artificial 
intelligence in exploring why algorithms have grouped 
specific data. Methods known as class activation mapping 
try to explore what is going on when a machine learning 
algorithm makes particular decisions (Figure  3). For 
example, certain neurons in a deep neural network will 
activate or ‘show attention’ when looking at cells that it 
categorizes as similar. Through mathematical operations 

Figure 1.  Complexity in raw microscopic images. (a) Isogenic triple negative breast cancer cells showing a wide range of 
shapes and phenotypes. A clear example of cancer heterogeneity and how their analysis may prove challenging even to 
experts. Image taken by Patricia Pascal-Vargas. (b) Melanoma cell spreading on collagen matrix. These cells are master shape-
shifters, which rapidly adapt to new environments. Here we see the subcellular structures carry an abundance of information 
with microbial adhesions (cellular grips) represented in blue, showing their morphological use in meeting the physical 
demands of new tissue. Image taken by Oliver Inge and Chris Bakal.
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Figure 2.  A diagram of generating and visualizing representative cells. After collecting a large database of single cells, 
morphological profiles for each cell are calculated. These morphological profiles include shape descriptors as well as 
subcellular structures. Varying mathematical techniques are used to model these profiles and find representative cells for 
certain classes. These representative cells are then simulated through the synthesis of multiple subcellular components 
and finally visualized using a visualization engine such as Napari or Fiji. [Source: Murphy, 2016, Methods, DOI: 10.1016/j.
ymeth.2015.10.011].

Figure 3.  Class activation mapping ‘unboxing’ the black box that is deep learning. Here, we see that class activation mapping 
on tasks of muscular dystrophy classification in MRI is able to explain areas of most importance when a model classifies 
images as normal, Duchenne muscular dystrophy and congenital muscular dystrophies. These areas of most importance were 
shown to correlate well with biological interpretation thus verifying the model. [Source: Cai et al., 2019, Pattern Recognition, 
DOI: 10.1016/j.patcog.2018.08.012].
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known as convolution and pooling, we can project that 
‘attention’ on the original data to essentially see what 
the machine ‘sees’. Through this, we are also able to test 
the model by trying to trick it. Why does the model 
determine particular cells are of that phenotype, and if 
we warp that cell through various transformations, when 
will the model cease to recognize the phenotype?

Generating exemplar cells that complex 
computational models declare as being representative 
of certain phenotypes and ‘real’ (although they may not 
exist) is often done through deep learning techniques. 
Exploring and generating specific components of cells 
and how they work together in an integrated fashion 
allows us to truly understand the full context of cell 
biology. By training algorithms to recognize subcellular 
structures that even experts can’t see, we may be better 
equipped to label and visualize them more clearly. 
Combining this with probabilistic modelling, which 
captures variations in cell morphologies and locations 
for all components of interest, cells may be simulated 
and visualized in a much richer sense than simply seeing 
them through the microscope (Figure 4).

Conclusion, challenges and future 
aspects

Up until recently, what we view as typical cells (drawings 
shown in biology textbooks) are a great starting point. 
However, in reality, there is most probably no cell that 
has ever looked like that. Visualizing what is going on 
in cells and cell communities has commonly been done 
through viewing raw microscopy images. This becomes 
exponentially more difficult when the dimension and 
throughput increases. Visualization techniques beyond 
the classic need to be explored to understand underlying 

cell processes, how each subcellular component works 
together and capture the heterogeneity found in cell 
populations.

Early attempts to quantify morphological features 
and present distinct classes have paved the way for more 
complex generation and simulation of representative cells 
through modern artificial intelligence-based techniques. 
This, along with the increasing computational power of 
today, has allowed researchers to create visualizations that 
give much more information than previously dreamed. 
We can now explore and change specific components 
and analyse how they affect the environment as a 
whole. We know that cells react differently to different 
environments and adding these kinds of features into 
simulations could extend our knowledge of the in vivo 
context.

Although we have come a long way, we are 
still limited by the technology of our time. These 
computational models are heavily reliant on the amount 
of data on which they are trained. Efforts towards 
high-throughput imaging will significantly increase 
the accuracy and effectiveness of these models. High-
resolution volumetric time-series data inherently takes 
up significant amounts of storage, often more than that 
available on modern processing units, which help speed 
up computation. If we cannot fit the data and the model 
on these units, we cannot achieve results fast. Hardware 
companies are continuously pushing the boundaries and 
what was thought impossible a decade ago is already 
possible today.

Simulating complex environments accurately 
and efficiently will prove vital in understanding the 
complexity and unpacking the chaos of cell biology. 
Moreover, seeing what the machine sees is an excellent 
step in utilizing the ever-growing technology to 
understand the very fundamentals of living organisms.■

Figure 4.  Probabilistic modelling allows the generation of a probabilistic representation that presents locations and 
morphologies of subcellular structures. This may then be incorporated in user-friendly graphic user interfaces to look deeper 
into cells through realistic simulations of cells’ in vivo contexts [Source: https://www.allencell.org/3d-probabilistic-modeling.
html].
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