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ABSTRACT

Aberrations in cell geometry are linked to cell signalling and disease. For example, metastatic1

melanoma cells alter their shape to invade tissues and drive disease. Despite this, there is a paucity2

of methods to quantify cell shape in 3D and little understanding of the shape-space cells explore.3

Currently, most descriptions of cell shape rely on predefined measurements of cell regions or points4

along a perimeter. The adoption of 3D tissue culture and imaging systems in medical research has5

recently created a growing need for comprehensive 3D shape descriptions of cells. We have addressed6

this need using unsupervised geometric deep learning to learn shape representations of cells from 3D7

microscopy images of metastatic melanoma cells embedded in collagen tissue-like matrices. We used8

a dynamic graph convolutional foldingnet autoencoder with improved deep embedded clustering to9

simultaneously learn lower-dimensional representations and classes of 3D cell shapes from a dataset10

of more than 70,000 drug-treated melanoma cells imaged by high throughput light-sheet microscopy.11

We propose describing cell shape using 3D quantitative morphological signatures, which represent a12

cell’s similarity to shape modes in the dataset, and are a direct output from our model. We used the13

extracted features to reveal the extent of the cell shape landscape and found that the shapes learned14

could predict drug treatment (up to 86% accuracy) and cell microenvironment, and are explainable.15

In particular, we found strikingly similar deep learning shape signatures between cells treated with16

microtubule polymerisation inhibitors and branched actin inhibitors. Finally, we implemented our17

methods as a Python package for ease of use by the medical research community.18

Keywords 3D, geometric, deep learning, single-cell, shape19

Introduction20

A central principle in biology is that the shape of living things is connected to their function. Shape is determined21

by the interaction of evolution with physical laws [1, 2], and aberrations in shape can be a cause or sign of disease22

[3]. This connection between shape and function holds at every spatial scale from molecules to cells, to organs, and23

organisms[4].24
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Due to the importance of shape, biologists have developed many descriptors that attempt to measure and describe it.26

Traditionally, we understand shape using predetermined or “classical” features. These are pre-selected, mathematically27

defined measures of geometry and often require a preconceived idea of which features are important for the task at hand.28

Geometric descriptors include region-based shape descriptors such as area, perimeter, and eccentricity [5, 6, 7, 8, 9],29

as well as boundary features such as the relative position of consecutive points along a 2D perimeter [10, 11]. In30

the context of studying living cells in 2D images, these geometric approaches have been remarkably successful at31

identifying major categories of cell shape, and linking cell shapes to the molecular signalling pathways that control32

geometry [8, 12, 3, 13], or respond to changes in geometry [14, 15, 16, 17].33

34

While measuring shape in 2D images has been illuminating, cells exist in 3D environments and their 3D geometry35

is a rich source of information about the inner workings of cells and tissues. For example, recent pioneering work36

has demonstrated that shape motifs extracted from 3D images can be linked to lipid membrane signalling and cancer37

signalling pathways [14], and changes in 3D nuclear morphometry are linked to chromatin organisation [18]. At the38

scale of developing tissues, the discovery of new 3D geometries has explained how cells pack stably into curved39

organs [19]. Now, the development of high throughput light-sheet imaging [20, 21] has made it possible to image40

large numbers of cells in 3D with sub-cellular resolution. This has led to a growing need for accurate 3D shape41

representations. We have addressed this need by building upon recent advances in deep learning (DL), and the field of42

computer vision.43

44

Robust representation of the shape of 3D objects is a major goal in the field of computer vision [22], and there has45

been rapid progress in this domain. Supervised and unsupervised methods of shape description have been built on46

large-scale labelled datasets of 3D models of everyday objects [22, 23, 24]. State-of-the-art methods have analysed47

these 3D models as either 3D binary voxelised objects, or point clouds for tasks of classification [25, 26, 27, 28]48

and unsupervised representation learning [29, 30, 31, 32, 33, 34, 35]. Point cloud representation is an alternative49

approach to representing 3D images with regular dense voxels. Point clouds are composed of unordered and50

irregular sets of points, P ∈ RN×3. Point clouds are scattered collections of points in 3D space and are arguably51

the simplest shape representation. These are easily obtainable once a segmented mask has been created and are52

memory-efficient when compared to 3D images. 3D images grow in memory depending on the size of the object53

or the number of voxels, however, point clouds may be represented by a fixed set of points so that larger objects54

use the same amount of memory as smaller objects. This means that methods using point cloud representation are55

easily scalable. This data representation is the most commonly used in 3D shape analysis primarily because this56

is the raw data of object surfaces received from LIDAR sensors in applications of autonomous driving, robotics,57

and scene understanding. This has led to in-depth research into DL architectures which explore local geometric58

information, using convolution, graph, and attention mechanisms on point clouds for improvements in 3D shape analysis.59

60

DL on point cloud data often involves representing point clouds as graphs and then performing geometric deep learning61

(GDL) on these graphs [25, 36, 27, 37, 38]. In computer science, graphs are data structures that consist of nodes and62

edges. DL on graphs requires adaptations as the data structure is non-Euclidean and makes regular operations such as63

convolution rather elusive. GDL is a branch of deep learning that consists of methods to generalise DL methods to64

non-Euclidean domains such as graphs [39].65

66

Feature or representation learning are techniques that enable a machine to automatically learn representations needed67

for downstream tasks including clustering or classification. Autoencoders are DL algorithms that are commonly68

used for representation learning tasks. In general, autoencoders are machines that consist of an encoder and a69

decoder part where the encoder maps the input to a lower-dimensional space and the decoder attempts to reconstruct70

the input. Autoencoders are trained by minimising the difference between the input and the reconstructed data.71

Graph-based autoencoders learn lower-dimensional representations of graph-structured data and have been used to72

learn representations of 3D shapes[32, 31, 40].73

74

Motivated by the need to extract information embedded in 3D shape, and by the effectiveness of GDL approaches in75

generating 3D shape representations, we have used artificial intelligence to reveal the geometric landscape of biological76

cells. In this study, we build on the progress made in computer vision and use neural networks to automatically learn77

high-quality shape representations for single cells in 3D microscopy images. To our knowledge, this represents the78

first unsupervised approach to the description of 3D cell morphology. After the generation of high-quality 3D shape79

representations we use our GDL features to predict drug treatments, and explore and explain the features learned. Finally,80

the methods have been coordinated in an open-source Python package for ease of use for the research community.81
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The code and links to all repositories used in this study are freely available at https://github.com/DeVriesMatt/82

cellshape.83

Results84

Data acquisition and processing85

To create a dataset of cell and nuclei 3D shapes that exist in a human cell line, we used light-sheet microscopy to image86

more than 70,000 WM266.4 metastatic melanoma cells embedded in tissue-like collagen matrices. To sample a wide87

range of the possible shapes that cells can make we treated cells with inhibitors of the cytoskeleton (Figure 1A), as88

well as inhibitors of cells signalling pathways. These cells were embedded in an environment that spanned from89

mechanically rigid and flat (within 7 µm of the coverslip), to soft and 3D (greater than 7 µm away from the coverslip).90

Coverslip height was identified using a z profile of the nucleus intensity as described in [41]. Based on previous works91

on 3D cell shape analysis and collagen dispensed on rigid substrates, we treat these as two different environmental92

classes, namely proximal and distal [41].93

94

In order to focus on shape data, we created binary masks of each cell and nucleus by thresholding the whole volume by95

active contour segmentation [42]. Touching cells and nuclei were separated by the watershed-based methods described96

in [41] (Figure 1B). Our GDL method requires point cloud data. As such, 3D voxel masks were then converted to mesh97

objects using marching cubes and 2048 points were sampled from the surfaces of each mesh object to give a point cloud98

representation of each cell and nuclei (Figure 1C). We have created a Python package for point cloud generation called99

‘cellshape-helper’. We have implemented a number of GDL algorithms for shape representation learning on point100

clouds and made these available as a python package called ‘cellshape-cloud’. Point clouds were pre-processed by101

mean centring and scaling to assist in training our GDL model.102

An automated method to profile cell shape in 3D using geometric deep learning103

Towards the goal of creating an automated method to profile single-cell shapes in 3D, we used GDL models. Our104

GDL model, dubbed Dynamic Graph Convolutional FoldingNet (DFN) (Figure 1D) (detailed description in ), is a105

combination of three techniques and is intended to learn shape features and classes simultaneously. DFN consists of an106

autoencoder to learn shape representations in an unsupervised manner with an additional clustering layer that groups107

cells into classes based on these features. A point cloud representation of a cell or nuclei is passed into the encoder part108

of the autoencoder, this encoder part is known as a dynamic graph convolutional network [25] (light blue in Figure 1D).109

Here, the point cloud goes through a series of operations known as edge convolution. Edge convolution is an operation110

which takes in a point cloud, creates a k-nearest neighbour graph on that point cloud, and then performs 2D convolution111

on the edges or adjacency matrices of that graph and outputs a new lower-dimensional set of points. This part is called a112

dynamic graph convolution as a new graph is constructed at every layer of the network. The output of this encoder is a113

lower-dimensional representation, Z, of the input point cloud. This lower-dimensional representation passes through114

two branches, each with different purposes. In order to learn representative features, we need to be able to reconstruct115

from this lower-dimensional space to the original point cloud. To do this, we use a decoder in the form of a FoldingNet116

[31] (light orange in Figure 1D). The FoldingNet takes in the lower dimensional representation concatenates it with117

points sampled from a 2D plane and performs multi-layer perceptron operations on this to output a reconstructed point118

cloud. This part is trained on how similar the input and output point clouds are. In order to learn shape classes, a119

clustering layer takes in the lower dimensional feature vector, performs k-means clustering to get an initial estimate of120

shape classes and then gives a probability score of how likely a particular feature representation of a 3D cell is to belong121

to a cluster or shape class (grey in Figure 1D). In order to avoid confusion, we refer to the k in the k-nearest neighbours122

graph algorithm as kg and the k in the k-means clustering algorithm as kc. Cluster centres and encoder weights are123

learned in a way which places most of the probability mass where the clustering layer is confident that certain cells124

belong to certain classes. Initially, the DFN was trained on the ShapeNet dataset for 250 epochs and then we continued125

training on our point cloud representations of both cells and nuclei for another 250 epochs using Adam optimiser with126

e−6 weight decay. We used a batch size of 16 with an initial learning rate of e−4 and an exponential learning rate decay127

scheduler. The DFN model was set to extract 128 features from each point cloud (see Methods Section ).128

Exploring the cell shape feature landscape129

Our trained DFN model without the clustering layer was first used to extract 3D shape features from all cells in our130

dataset. We visualised the extent of the cell shape landscape by performing UMAP [43] on the extracted features to131

form a two-dimensional embedding space. We sampled two-dimensional locations along this projection and plotted132
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Figure 1: Learning shape features and classes simultaneously through geometric deep learning and deep
clustering. (A) Single-cells embedded in a collagen matrix were treated with a variety of small molecule drugs and
imaged in 3D in high-throughput by stage scanning oblique plane microscopy (ssOPM). Maximum intensity projections
(XY view) of cells treated with DMSO (control), Blebbistatin (myosin) and Nocodazole (microtubule) are shown.
Intensity is the grayscale intensity of the CAAX-GFP membrane marker. (B) The cells were labelled with transgenes
expressing Histone-2B (which labels the nucleus) and CAAX-GFP (which labels cell membranes). Nucleus and cell
label intensities (Raw) and their segmentation masks (3D mask) are shown for a single cell. (C) We used the marching
cubes algorithm to create a mesh object of vertices, faces, and normals and then sampled 2048 points from this mesh
object to create a point cloud for each cell cytoplasm and nucleus. The 3D surface render and 3D point cloud for a
cell are shown. (D) A dynamic graph convolutional foldingnet autoencoder was used to learn a lower-dimensional
representation of the input cell shape. This consisted of a Dynamic Graph CNN as an encoder (light blue) and a
FoldingNet decoder (light orange). In order to learn representations and shape classes simultaneously, improved deep
embedded clustering adds a clustering layer to the feature representations (light purple). This maps the representations
of each cell to a specific shape class and gives a morphological signature for each cell in terms of the different shape
classes that exist in the dataset. We show a dotted box around this component of the model as it is not always used and
is an addition to the autoencoder.

rendered images of cell masks which generated the features projected in UMAP space (Figure 2A). Furthermore, we133

zoom in on locations where feature representations were dense to show common shapes that exist in the dataset. The134

first dimension of the UMAP seems to incorporate eccentricity, with round cells having low values for this dimension135

and more eccentric cells having high values. After visualising the extent of the cell shape landscape, we looked at136

the distribution of cells within this landscape. We estimated the probability density function using kernel density137

estimation of the UMAP embedding of the latent space (Figure 2B). This revealed three peaks representing common138

cell shapes or shape modes in our dataset. These peaks represented small round cells, large round cells, and a large139

group of cells that ranged from elongated to protrusive. A subset of cells in our dataset had been treated with small140

molecule inhibitors, including myosin and microtubule inhibitors. We visually assessed the effect of these on cell141

shapes in 3D. The cell shape feature landscape demonstrated that cells treated with different inhibitors cause different142

distributions of embedding (which represent shape distributions). For example, Control cells (Figure 2C) and cells143

treated with Blebbistatin (myosin inhibitor) (Figure 2D) are able to take on a larger range of shapes than cells treated144

with Nocodazole (microtubule inhibitor) (Figure 2E). Nocodazole-treated cell shapes are confined to rounder-like cells145

with few protrusive cells.146

147

The cells in our dataset are embedded in a 3D collagen matrix at a variety of depths. To understand how differences in148

the physical environment influence cell shape we visualised our UMAP space based on the different environments. We149

coloured each embedding location in UMAP space according to the cell’s distance from the coverslip (Figure 2F). This150

showed that cells close to the rigid coverslip (proximal) and cells embedded in collagen (distal) are separated in shape151

space and that the geometry and physical properties of the microenvironment have a major influence on cell shape. The152

distribution of cells proximal to the coverslip (fewer than 7 microns) showed two peaks or shape modes with one of153

these being more spread out than the other (Figure 2G). A similar analysis of the distribution of the UMAP embedding154

for cells distal to the coverslip (greater than 7 microns) showed one major density peak with three smaller peaks (Figure155

2H). Interestingly, the embedding location of the greatest peak for distal cells is almost non-existent in cells proximal to156

the coverslip. It is also evident that the cells’ environment impacts their ability to take on different shapes.157

158

Deep embedded clustering learns shape features and classes simultaneously159

Many studies have used deep learning to cluster or organise everyday 3D objects by their shape [31, 44, 45, 46]. These160

tasks use datasets that have distinct semantic (or human meaningful) classes. For example, the ModelNet [22] dataset161

includes chairs, aeroplanes, baths, beds, lamps and cars. In contrast, in problems of phenotypic classification within a162

dataset of cells, we do not have labelled phenotypes for every single cell. Furthermore, we did not know the number163

of semantic or phenotypic classes in our dataset, or even if any distinct classes exist. An interesting solution given164

this lack of prior knowledge has been to automatically learn feature profiles and classify images into classes without165

predefined labels [47, 48]. We wanted to explore the different classes of cell shape in our dataset and propose jointly166

learning feature representations and shape clusters, simultaneously.167

168
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Figure 2: Dynamic graph convolutional foldingnet reveals the cell shape landscape in a cancer cell line. We
performed UMAP on the 128 features extracted using the DFN without the addition of the clustering layer. (A) Rendered
sample images of cell masks are plotted in UMAP. (B-E) The probability density of the UMAP was estimated using
kernel density estimation. DMSO treated cells (C) had different UMAP distributions than Blebbistatin (D) treated cells
and Nocodazole (E) treated cells. (F) The points on the UMAP were coloured by their distance relative to the coverslip.
The microenvironment impacts the ability of cells to take on different shapes. (G) Cells on the coverslip tend to be
flatter and more spread out. (H) Cells embedded in collagen (further away from the coverslip) are more round.

After training the DFN autoencoder, we performed improved deep embedded clustering (IDEC) [49] by adding a169

clustering layer to the output of the encoder part. This clustering layer (grey in Figure 1D) takes the embedded feature170

space, Z, as input and outputs a soft-label over the shape classes found according to a Student’s t-distribution (purple171

box in Figure 1D). The soft-label is interpreted as the probability of assigning an input cell i to shape cluster j. For172

example, if there are kc clusters in the dataset, each cell is assigned kc soft-labels (one for each cluster) and each173

soft-label contains scores from zero to one reflecting how similar the cell is to each of the different cluster centres (with174

one being most similar)(Figure 3A). Since the 3D shape of cells in a fixed assay is a relatively continuous distribution175

with an indefinite number of distinct classes (cells may be very similar in shape, yet almost never the exact same), it is176

more natural to describe a shape by a signature of how similar it is to a number of different exemplar classes. For177

example, we may wish to describe the 3D shape of a cell to be 30% similar to shape cluster 0, 10% similar to shape178

cluster 1, 5% similar to shape cluster 2 for shape classes i = 0, 1, ...kc, such that the sum of similarity percentages add179

to 100 (
∑kc

i=0 k
(i)
c = 100, where k(i)c is shape class i). This can be defined as a quantitative morphological signature for180

the 3D shape of a cell (3DQMS). Therefore, our kc-dimensional vector of soft-labels can be used as a 3DQMS. The181

number of clusters was chosen as a hyper-parameter. However, this could also be estimated by prior knowledge, or182

through more formal methods such as the elbow, average silhouette or gap statistic methods when undertaking the183

initial k-means clustering. The clustering layer is packaged in a tool called ‘cellshape-cluster’ and can easily be184

imported into our ‘cellshape-cloud’ autoencoder models.185

186

For our experiments, we selected five clusters and the DFN-IDEC output a soft-label for each cell of the five shape187

classes found. These five clusters approximated the five most different groupings of 3D cell shape features in our188

dataset. We sampled from the dataset for cells which had the highest values of soft-label for each of the five classes to189

see classes ranging from round, to elongated, to protrusive and block shapes cells (Figure 3B). Using this soft-label,190

we were also able to examine the 3DQMS for cells treated with different inhibitors. We can further inspect how191

Blebbistatin and Nocodazole-treated cells make up the different clusters by projecting the features using UMAP and192

fitting a kernel density on this UMAP projection (Figure 3 C), similar to Figure 2. Cells treated with Blebbistatin193

explore four of the five shape clusters (Figure 3C), labelled 1-4 in Figure 3A. These shape clusters are large and194

protrusive when compared with shape cluster 0 which is the round cluster. Nocodazole-treated cells tend to mostly fall195

within shape cluster 0 (Figure 3I). Next, we standardised and averaged the 3DQMS for each cell by their treatment and196

performed hierarchical clustering on these to find four classes of treatment effects on shape (Figure 3D). We noted that197

two distinct inhibitors of myosin activation (Blebbistatin and H1152) grouped together, indicating that the 3DQMS will198

be a powerful tool for using cell shape to identify drugs that act on similar pathways. The other classes of treatment199

effects on shape included Nocodazole, which inhibits the polymerisation of microtubules, CK666, which prevents actin200

branching and then control cells grouped with those treatments that do not have significant effects on cell shape. To201

visualise the variability in 3DQMS within each treatment and differences between treatments, we took the average202

3DQMS for each well and embedded these in two dimensions using UMAP (Figure 3E). This again showed the two203

distinct myosin inhibitors grouped together.204

205

When clustering on the shape classes (hierarchical clustering on the columns of Figure 3D), we saw that shape cluster 0,206

which is the first column in Figure 3D, was the main driver of variation between the treatments. Thus, we examined the207

soft-label distribution for shape cluster 0 in these four main classes of treatment effects on shape (Figure 3F). Cells208

treated with Blebbistatin tended to have more cells with low-scoring soft-labels in cluster 0 (Figure 3F), compared209

to the DMSO and CK666 treated cells (Grey box in Figure 3F and F, respectively). In contrast, cells treated with210

Nocodazole tended to have much higher soft-label scores for cluster 0 (Figure 3F). A cell’s environment impacts the211

shape space, as seen in Figure 2 , and thus affects the 3DQMS of different treatments. For cells distal to the coverslip,212

the distribution of soft-label scores of cluster 0 for cells treated with Blebbistatin tends to flatten out slightly (Magenta213

box in Figure 3F). All distributions shift to the right (higher scores for shape cluster 0) for distal cells (Magenta box in214

Figure 3F′), whilst this distribution shifts to the left for proximal cells across all treatments (Purple box in Figure 3F).215

Cells treated with Nocodazole that were distal to the coverslip mostly scored very high for shape cluster 0 (Magenta in216
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Figure 3F). Finally, the feature landscape is affected by the clustering layer such that each peak roughly represents a217

shape cluster (Figure 3A).218

219

Learned shape features predict cell treatment220

We explored the possibility to distinguish between cells with different small molecule inhibitor treatments based221

purely on cytoplasm and nuclei shape features. Many studies in computer vision and 3D shape representation learning222

test the effectiveness of their representations with transfer classification tasks. This involves using a trained model223

to extract features from a dataset and then using these features to train a linear support vector machine (SVM)224

classifier [31, 44, 45, 46]. These tasks generally involve classification between objects from distinct semantic classes225

or categories, for example, cars, chairs, and aeroplanes [22]. Our dataset is comprised of a single cell type and did226

not have such distinct semantic classes, so to test our shape representations we predicted our drug treatment labels.227

Following similar procedures to previous researchers [31, 44, 45, 46], we used the trained DFN to extract features228

from each cell. These features were then used to train a linear SVM. For all experiments, we use one-versus-one229

SVM classifiers with an L2 penalty (C = 1), balanced class weights, and intercept scaling during training. We tested230

cytoplasm features and nuclei features alone and then combined them for ablation studies (Figure 4A). We performed a231

10-fold cross-validation for each experiment and report mean accuracies.232

233

To compare the relative importance of cell and nuclear for predicting drug treatments we tested the accuracy of234

classifiers using only cell features, only nuclear features or the combination of both cell and nuclear feature sets. We235

also analysed prediction accuracies for different environments (Figures4 B and C). To do this comparison we tested236

one-versus-one classification accuracies between Blebbistatin and Nocodazole-treated cells. We used these treatment237

sets because our deep clustering of our dataset showed that these two treatments had the most different 3DQMS profiles.238

239

When using cytoplasm shape features alone, we were able to predict the cells’ treatment with an accuracy of 79%240

for cells proximal to the coverslip, 82% for cells distal to the coverslip and 80% for all cells regardless of the241

microenvironment. This is compared to the 74% accuracy when using shape features extracted from the nucleus only242

for proximal cells, 76% for distal cells and 74% for all cells. When we combined these two sets of shape features,243

accuracies increased to 86%, 82% and 83% for proximal, distal and all cells respectively. This difference in accuracy244

between combined and individual data sets suggests that not only are the shapes of the cell and nucleus affected by245

these treatments but so too are the relationship between them (Figure 4A).246

247

Based on the combination of cell and nuclear features giving the best prediction accuracy we tested the prediction of all248

of our treatments in a pairwise fashion (Figures 4B and C). Due to the strong influence of environment on shape (Figure249

4A), we made these predictions separately for cells in soft collagen environments (distal to the coverslip), and cells in250

rigid environments (proximal to the coverslip). In the proximal setting, we saw a general trend for higher accuracy of251

one-versus-one predictions (Figure 4B) than those in the distal setting (Figure 4C). When looking at all cells in both252

settings, we see accuracies between the two settings (Figure 4D). We also visualised the difference between the two253

settings directly as the difference between 2D and 3D prediction accuracies (Figure 4D). For distal settings cells treated254

with Nocodazole, Blebbistatin and H1152 all had one-versus-one classification accuracies across all other treatments255

higher than 62%. On average, cells treated with Nocodazole had the highest classification accuracies (Figure 4C).256

We noted that Blebbistatin and H1152 were both distinguishable from control (66% for H1152 vs No Treatment and257

70% for Blebbistatin vs No Treatment in both environments, shown in Figure 4D) but difficult to distinguish from one258

another (56% accuracy).259

260

In the distal setting, many of the remaining treatments had one-versus-one classification accuracies of less than 0.6,261

indicating they occupy a similar region of shape space. Unexpectedly, we did notice that Binimetinib compared to our262

“No Treatment” control was as equally distinguishable as the arp2/3 inhibitor, CK666 (equally 63% in proximal cells,263

62% and 61% in distal cells, and equally 61% when looking at all cells). This was notable because Binimetinib is a264

MEK1/2 inhibitor without major connections to regulating the cytoskeleton, whereas the primary effect of CK666 is to265

prevent the formation of branched actin structures.266

267

Consistent with the distal setting, Nocodazole, Blebbistatin and H1152 had the highest one-versus-one classification268

accuracies in the proximal setting (Figure 4B). Also consistent with the distal setting, we saw that the targeted therapy269

Binimetinib was as distinguishable from controls as CK666. Strikingly the classification accuracy of Binimetinib270
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Figure 3: Improved deep embedded clustering learns quantitative morphological signatures for 3D shapes of cells.
We added a clustering layer to a trained DFN model to learn the shape clusters that exist in the dataset. (A) Schematic
example of Improved deep embedded clustering (IDEC) soft label assignment to a cell in the case of three clusters.
(B) The clustering layer outputs a distribution of soft-labels across the five classes. We show the five exemplar shape
classes found and the kernel density approximation of the features extracted. (C) Shows the UMAP projection of the
features extracted from the DFN-IDEC model for Blebbistatin and Nocodazole-treated cells. (D) Each cell is assigned a
3DQMS which is a five-dimensional vector that describes how similar it is to each shape cluster. We standardised and
averaged the 3DQMS for each treatment and performed hierarchical clustering to reveal four classes of the treatment
effects on cell shape. The dotted line shows the threshold for hierarchical clustering. (E) Shows a UMAP projection of
the 3DQMS for different treatments. (F) We show the distribution of soft-label scores for cluster 0 for Blebbistatin,
DMSO, CK666, and Nocodazole-treated cells respectively (All). Similarly, we show this for cells proximal to the
coverslip (Proximal). (D”-H”) And for cells distal to the coverslip (Distal).

was increased in the proximal setting (Figures 4B, C and E), suggesting that the shape effect of the MEK inhibitor271

is more pronounced in rigid environments. This does not appear to be a general effect of the cell cycle inhibitory272

effect of Binimetinib, for two reasons. First, cells treated with the CDK4/6 cell cycle inhibitor, Palbociclib, were not273

readily distinguishable from control. Second, In contrast to Binimetinib, there was no obvious interaction between274

shape and environment on the effect of treatment with Palbociclib (Figure 4D). Taken together, the lack of general275

effect of cell cycle inhibition suggests components of the cytoskeleton may be direct targets of MEK1/2 phosphorylation.276

277

Finally, following the observation that Blebbistatin and H1152 were distinct from control but hard to discern from278

one another, we developed a classification “interference test”. To do this, we measured the change in the correct279

classification of Blebbistatin-treated from control cells, in three-way comparisons between DMSO, Blebbistatin280

and each other treatment. We found that in one-versus-one comparisons, the SVM classified Blebbistatin correctly281

from a pool of Blebbistatin and control cells with an accuracy of about 65% (65% of true Blebbistatin-treated cells282

were predicted as Blebbistatin). This is different to the accuracies reported above as those were the accuracies for283

both treatments involved in the classifier. This accuracy showed little change in three-way comparisons between284

Blebbistatin, DMSO and iterations of most other treatments. For example, introducing MK1775 into the classification285

(Blebbistatin:MK1775:DMSO) had little effect (0.02 interference), but introducing H1152 (Blebbistatin:H1152:DMSO)286

had a large impact on classification accuracy (0.18 interference) (Figure 4E). Blebbistatin and H1152 act at separate287

points in the Rho-Rock-Myosin II activation cascade, indicating that our extracted shape features and classification288

interference test can be used to group drugs with similar mechanisms of action (Figure 4F).289

290

Interpreting the learned features291

Feature interpretation allows biologists to inspect DL models. Ultimately we want to know what the models are292

seeing in the data and learn from them. DL models may be learning redundancies or focusing on information that is293

not important to the task at hand. Alternatively, the models may learn something which is not already known, thus294

providing new information on possible biomarkers.295

296

Given that the DFN is able to automatically extract features which classify myosin and microtubule inhibitors based on297

cell shape (Figure 4), we sought to interpret the cell shape features learned by our method. These methods can be easily298

extended to nuclei shape features. We interpreted our features depending on two criteria, first we discovered intuitive299

explanations for the DL features that were the most powerful drivers of variation in cell shape space by relating them to300

manually crafted, ‘classical’ features.301

302

Our second approach was a task-specific approach, where we decoded the DL features that contributed the most to303

successful discrimination between cell treatments in different classification tasks (see Methods Section ). Here, we304

compared features important for classifying Blebbistatin versus Nocodazole-treated cells.305

306

Naturally, there existed a correlation between the DL features. Therefore, we performed principal component analysis307

on the DL features to obtain 128 principal components (PC) ordered by the magnitude of their singular values. We then308

correlated the principal components with our classical features of geometry (Figure 5A). Green boxes in Figure 5A309

show the classical features with the highest absolute correlation to each PC. PC0 encodes many of the classical features310
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Figure 4: Features extracted using the DFN accurately predict small molecule treatments. (A) Features were
extracted from the cytoplasm, and nuclei of cells treated with Nocodazole and Blebbistatin and used to train a linear
support vector machine (SVM) to predict treatment. We tested the different feature sets using cytoplasm features
only, nucleus features only and combining these two. We also tested predictions in different environments from cells
proximal to the coverslip, to distal from the coverslip to all cells (both proximal and distal). (B-C) We used an SVM to
predict treatment for all cells using the combined cell and nucleus feature set in (B) proximal cells, and (C) distal cells.
(D) Shows the difference in accuracies between proximal and distal cells. (E) Shows the interference effect of each
treatment on the accurate classification of Blebbistatin when compared to DMSO. The treatment with the strongest
interference effect was H1152, which acts above Blebbistatin in the RHO-ROCK1/2-MyosinII pathway.(F) A schematic
of the RHO-ROCK1/2-MyosinII pathway and the target of Blebbistatin and H1152.

with major axis, surface area and sphericity being the highest. PC2, which explains 10.85% of the variation in the311

data, has a maximum correlation coefficient of 0.14 with classical features (minor axis) and does not correlate highly312

with any classical features suggesting that the DFN may be capturing features which are not explained by our classi-313

cal features. The first two PCs account for 42.47% of the variation in the data with the first 10 PCs accounting for 82.24%.314

315

We assessed how the treatments differ in terms of their PC loadings by taking the average PC loadings for cells treated316

with Blebbistatin, Nocodazole, H1152, CK666 and DMSO (control) (Figure 5B). For most of the first 10 PCs, we317

see that cells treated with Blebbistatin and cells treated with H1152 (Blebbistatin and H1152 which both act in the318

Rho-Rock-Myosin activation cascade) have similar average PC loadings. Interestingly, cells treated with Nocodazole319

and cells treated with CK666 have similar signs of average PC loadings for most PCs. These two groups (Blebbistatin320

and H1152 being one and Nocodazole and CK666 being another) tend to have opposite average PC loadings.321

322
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The second, task-specific approach, revealed that PC0, PC3, and PC9 were most important in classifying between323

Nocodazole and Blebbistatin treated cells (See Methods Section ). Similar to methods in [50], the correlations shown in324

Figure 5A are visually confirmed by sampling cell shapes from the dataset with a range of values for different principal325

components (Figure 5C-E shows this for PC0, PC3, and PC9). To assess the relationship between classical features and326

the PC of the DL features, we fit local regression curves using weighted linear least squares regression (lowess) (Figure327

5C-D). We calculated confidence intervals around the lowess fits by using bootstrapping to provide an estimate of the328

spread of the curve. We show the 65% confidence intervals.329

330

The first PC, PC0, represents a combination of classical features including the major axis, surface area, and the331

sphericity of the cell. We see a positive linear relationship between PC0 and both surface area and major axis332

when fitting local regression curves between PC0 and these features and a negative relationship between PC0 and333

sphericity (Figures 5C). PC3 is most correlated with axial extent, distance from the coverslip and the minor axis. These334

relationships are more complex (Figure 5D). Similarly, PC9 has complex relationships to the volume to surface area335

ratio and the equivalent diameter of 3D cells (Figure 5E).336

337

PC1, which explains 18.67% of the variation of the DL features correlates most with roll which is an orientation338

parameter representing the angle of rotation when looking at the origin along the x-axis (calculated using MATLAB’s339

regionprops3 function). The orientation of cells, whilst important to geometry, may not be of interest in some biological340

contexts. As a step toward a rotationally invariant method to extract 3D shape features, we used a “pose correction”341

approach to first align the cells before extracting the features (Section ). Cells were pose corrected to align them342

according to their principal axes and obtain canonical poses (See Methods Section ). Figure 5F and G show two cells343

before and after alignment respectively.344

345

We visually expressed how DL features may capture classical features by performing UMAP on the DL features and346

colouring each point by the corresponding classical feature value. We do this for DL features extracted from both347

unaligned (Figure 5H-H′′) and aligned cells (Figure 5I-I′′). This revealed a clear pattern of organisation of roll values348

suggesting that this feature is being incorporated by the DL features of the unaligned dataset (Figure 5H). However,349

after pose correction to align the cells by their principal axes, the effect of roll was mitigated (Figure 5I). Figure 5H′-H′′350

show how classical features; sphericity, eccentricity and polarity, are all incorporated by the DL features. Similarly,351

after aligning the cells, we still see these features being incorporated (Figure 5I′-I′′).352

Discussion353

Deep learning has been applied in the context of 3D microscopy for tasks of segmentation [51, 52, 53], restoration and354

denoising [54], and classification. However, few methods explore the possibility of utilising deep learning to learn the355

shape feature profiles of single-cells in 3D. We have developed an automatic tool to simultaneously learn shape features356

and shape classes of 3D objects and applied this to a metastatic melanoma cell line. Our method assigns 3D quantitative357

morphological signatures to each cell. This signature measures how similar the shape of each cell is to the shape classes358

found in the dataset. We used these extracted features to distinguish between cells treated with inhibitors of myosin and359

microtubules and show that these inhibitors are environmentally dependent. We were also able to use pose correction as360

a practical method to remove learning of rotational variance. Finally, we provide intuitive explanations of the learned361

features by correlating them to classical measures of geometry and by visualising uncorrelated embeddings of these362

features (in the form of principal components). This showed that our model automatically learns features which capture363

the traditional measures of geometry, and the low correlation of our second principle component with traditional364

measures suggested we are capturing information that is previously missed.365

366

Building a deep learning model requires design choices about input data, model architecture and hyperparameters. We367

discuss this in more detail to allow repeatability and improvements to our methods in further studies.368

369

The first decision is the choice of input data. Since the creation of 3D object datasets such as ModelNet [22], the two370

broad approaches which have been used to represent the input data are to use voxels (the 3D counterpart to pixels in 2D371

images), or point clouds. Recently point clouds have been the dominant approach [38, 28, 55]. One reason for this is372

practical. In particular, point cloud data is abundant and is the type of data generated for raw object surfaces when using373

devices like LIDAR sensors. Additionally, point cloud data is a very simple 3D representation of 3D shape, consisting374

of a 2D matrix of positions of points. We had the choice of both voxel and point cloud representations and tried both375

approaches when representing human cells. For learning representations on 3D voxel grids, we utilised 3D ResNet376
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Figure 5: Interpreting learned features and a step towards rotational invariance with pose correction. (A) Pearson
correlation coefficients between principal components of extracted cell shape features and classical features. Green
boxes show the classical features with the highest absolute correlation to each principal component. (B) Average PC
loadings for cells treated with Blebbistatin, Nocodazole, H1152, CK666, and DMSO. (C-E) Interpreting the cell shape
features extracted from the DFN, by continuously varying PC (PC0, PC3, PC9) values. Images are sampled from
binned encodings of the respective PC (PC0, PC3, PC9) value. We show a lowess fit with a 65% confidence interval
between (C) PC0 and major axis, surface area (Surf. area), and sphericity. (D) Shows the sampled images for the range
of PC3 values. Panels show lowess fit with a 65% confidence interval between PC3 and axial extent, distance from the
coverslip (Dist. covers.), and minor axis. (E) Shows the same for PC9- the lowess fit of PC9 with volume to surface
area ratio (Vol/Surf), equivalent diameter (Equiv. dia.), and Minor axis. (F) Before pose correction to align cells to
their principal axis. (G) After pose correction to align cells shown in (F). (H-H′′) Scatter plot of UMAP embedding of
cell shape features on unaligned data with each point coloured by their corresponding roll, eccentricity, sphericity, and
polarity value. (I-I′′) shows the same for the aligned cells.

architectures and subsequently packaged our methods as a Python package called ’cellshape-voxel’ for researchers377

to use freely. Using performance on classification tasks as a guide, we found that autoencoders using point cloud data378

were superior and have reported on these results. Our choice of 2048, as the number of points, was based on previous379

works [31, 25]. Future work could explore methods of describing cells by either a few critical points or alternatively, a380

constant density of points. For example, a cell could be described by its centre of mass and points along its protrusions.381

While decreasing the detail by describing cells by much fewer points, computational efficiency would significantly382

increase.383

384

A second key design decision is the selection of an autoencoder. As previously discussed, geometric deep learning385

is the branch of deep learning that deals with graph or manifold (unstructured) data such as graphs created on point386

clouds. Geometric deep learning has predominantly been used on point cloud data to produce state-of-the-art results for387

classification and representation learning tasks [38, 40]. Our model incorporated edge convolution [25] as the primary388

operator in our encoder part of our autoencoder as this has proved successful in representation learning tasks [55].389

FoldingNet is a novel folding-based decoder designed to assist in representation learning on point clouds [31]. This390

decoder backbone has been used extensively in the literature primarily as it is simple, and has shown promising results391

across several tasks [32, 40]. Thus, we incorporate a folding-based decoder in our model. Looking beyond the shapes392

of cells, future research could utilise our models to explore the shapes or networks of collections of cells in 3D cancer393

models such as tumour spheroids or organoids. Each cell in these populations of cells could represent a point with the394

entire population being represented as a point cloud. We can then use our methods to extract features from these point395

cloud representations of cells in populations, describing 3D cancer models as networks.396

397

A third important decision is a method to classify unlabelled data into classes. This is a challenging task with methods398

proposed for common 2D benchmark datasets [56, 48]. To solve this problem for biological cells, we took the approach399

of deep embedded clustering. Deep embedded clustering is a way to simultaneously learn feature representations400

and cluster assignments or classes. This method involves clustering with Kullback–Leibler divergence on feature401

representations from an autoencoder [57]. This method can easily be incorporated into any autoencoder architecture402

and offers an interpretable output in the form of a soft-label which describes the probability of assigning data input403

to each cluster class. This, in turn, allows the assignment of data input to be continuous across classes rather than404

discrete. Cell shape morphology is a continuous variable with no two cells being identical in shape, and rather similar405

to each other or similar to exemplar shapes [58]. Describing cell shapes by a continuous similarity score to exemplar406

shapes offers a more natural solution than discrete binning into certain shape classes [8]. Thus, we have opted for407

deep embedded clustering to learn the 3D quantitative morphological signature (3DQMS) of cell shapes. Using these408

3DQMS, we found four groups of treatment effects on the shape which grouped two distinct inhibitors of myosin409

activation (Blebbistatin and H11522). This showed that our 3DQMS will be a powerful tool for using cell shape to410

identify drugs that act on similar pathways.411

412

Finally, the choices of hyperparameters are critical decisions in any deep learning pipeline. These include training413

configurations such as batch size, and learning rate, as well as optimisation algorithms and model architectural414

hyperparameters. These include the number of clusters in clustering algorithms, the number of neighbours to use when415

constructing k-nearest neighbour graphs, and the number of features to extract. Hyperparameters are commonly chosen416

through trial and error, or grid searches across a range of combinations with the best combination chosen according to417
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performance on the task at hand. We chose our hyperparameters by trial and error on transfer learning classification on418

the ModelNet40 dataset, with guidance from previous work on which our model is based [31, 25].419

420

A major theme in recent research into 3D shape representation is how to deal with differences in the rotation of objects421

with an otherwise similar geometric form [32, 59]. Orientation, composed of measures of roll, pitch and yaw, is422

generally considered part of the formal geometric description of an object. In some settings, a focus on orientation423

is useful, but in others it is undesirable. For example, earlier attempts at distinguishing everyday objects found that424

accurate classification of cars can drop from 70% to 20% depending on the orientation [59]. In these settings where the425

task is the classification of 3D objects based on shape, we generally do not expect an object to change its identity426

depending on its orientation. This means that for classification tasks, sensitivity to orientation is likely to be undesirable.427

However, there are settings where orientation is helpful. For example, in biological contexts like embryonic and428

postnatal development, the establishment of planar cell polarity results in the alignment of stereocilia. Orientation is a429

meaningful feature for the study of the shape of stereocilia in development. Similarly, orientation can reveal important430

information about a cell’s microenvironment, for example, alignment in the orientation of cancer cells migrating can431

indicate polarisation of the extracellular matrix. Because orientation can be important and useful, our feature extraction432

captures orientation by default (Figure 2 and Figure 5). However, we note there are also many applications in biology433

where orientation is not of interest. For example, orientation may not be of interest when studying the shapes of human434

cells in suspension, or free-living marine organisms. In this study, we addressed this using pose correction techniques435

based on works in [60] (Figure 5). It is worth noting that pose correction caused a decrease in the extracted features’436

ability to distinguish between treatments. Pose correction has been used in 2D shape analysis in biology [11], and has437

been a standard approach for circumventing the confounding effect of rotation in 3D shape datasets [22]. Recently, a438

number of groups have also developed rotationally invariant methods, which are directly incorporated into their models,439

to learn 3D shape representations [32, 59] that could also be applied to cells.440

441

Explainability is an important feature to consider when building deep learning models in any application, especially442

in medical research. We have considered ways of interpreting learned features, however, other methods may prove443

beneficial. When dealing with 2D pixel data of images, applications exist that overlay heatmaps to visually express444

where the model is looking when making certain decisions or classifications [61]. These have recently been extended to445

deal with 3D voxelised data and are commonly used in medical image analysis tasks [62]. These methods have been446

explored for use on point cloud data [63] showing that the methods may be reliable on point cloud data. Future work447

could incorporate class activation maps on point cloud data of cells to visually represent why certain cells are being448

grouped together.449

450

While our problem is fundamentally focused on an unsupervised feature representation of 3D cell shape, we have451

applied it in the context of cells treated with different small molecule inhibitors. We have taken advantage of this by452

using features automatically extracted using our DFN model, to train a linear support vector machine (SVM) that453

could distinguish between cells treated with myosin inhibitors from those treated with microtubule inhibitors with454

accuracies up to 86%. Furthermore, we showed how both cell and nuclei shape information is important in combination455

to predicting treatment, suggesting that these drugs not only affect cell shape and nuclei shape individually but also the456

relationship between the shapes of these components. Finally, we found that predicting treatment from cell shape457

was dependent on the environment with 86% accuracy between Blebbistatin treated cells in a proximal setting and458

82% in distal settings. Future work could explore supervised techniques to classify the treatment of a cell directly.459

Finally, treatments may have a significant effect on shape, but the temporal aspect of the treatment effect is not captured460

in a dataset of fixed cells. Understanding the temporal shape signatures or patterns in cell shape dynamics could461

allow a more accurate understanding of the effect of treatment on cell shape. Extending these methods to incorporate462

time-lapse sequences of cells could be done by utilising recurrent neural networks on sequential shape features extracted.463

464

Finally, a major component of our work is its accessibility to the wider biological and medical community. Packing our465

methods in open source Python packages with adaptability and ease of use allows further research on connecting 3D466

shapes to function across a variety of domains. Our Python package offers adaptability and growth with the plan to467

implement new methods continuously.468

469
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Methods470

Melanoma cell preparation471

Cells used in this study were WM266.4 harbouring CAAX-EGFP (donated from the Marshall lab), with the addition of472

an ERK-KTR-Ruby construct (addgene #90231) and a Histone2B-iRFP670 construct (addgene #90237).473

Collagen preparation474

Collagen hydrogels were prepared to a final concentration of 2mg/mL. Briefly, hydrogel solutions of dH2O, 5xDMEM,475

HEPES (7.5 pH), and Rat Tail Collagen IV (Corning) were prepared on ice to a final collagen concentration of 2mg/mL.476

Cells were re-suspended in hydrogel solution at a concentration of 4 E4 cells per 100 µl, and 100 µl of this solution477

dispensed into each experimental well on a 96 well plate. After dispensing cells, the plates were incubated at 37 degrees478

Celsius for 1 hour, and 100 µl of DMEM was added to each well.479

Treatments and cell fixation480

Treatments were added to cells 24 hours after seeding in collagen hydrogels. After 6 hours of treatment, cells were481

fixed in 4 percent paraformaldehyde for 30 minutes at room temperature. Final concentrations for treatments were:482

Binimetinib (2 µM ), Palbociclib (2 µM ), MK1775 (1 µM ), Blebbistatin (10 µM ), H1152 (10 µM ), PF228 (2 µM ),483

CK666 (100 µM ), Nocodazole (1 µM ) and DMSO 1 in 1000. Concentrations were calculated including the 100 µl484

volume of the collagen hydrogel.485

Microscopy setup and image acquisition486

OPM imaging was performed on a modified version of the OPM system described in [21, 41]. The primary microscope487

objective was a 60X/1.2NA water immersion objective, the secondary objective was a 50X/0.95NA air objective and488

the tertiary objective was a 40x/0.6NA air objective. The OPM angle was 35 degrees.489

490

A single sCMOS camera (pco Edge) was used in Global Reset acquisition mode with 1280 × 1000 pixels. A motorised491

filter wheel (FW103H/M, Thorlabs) was used to switch between filters for multichannel imaging. An OPM volume was492

acquired for iRFP (642 nm excitation and 731/137 emission filter (Semrock Brightline)) before the stage returned to493

the start position prior to the acquisition of the EGFP volume (488 nm excitation and 550/49 emission filter (Semrock494

Brightline)). Finally, a collagen scattered light volume (488 nm illumination and no emission filter) was acquired from495

the same start position. The laser illumination and camera exposure time were both 4 ms. The stage velocity was 0.16496

µm ms−1 and image acquisition was triggered every 1.4 microns of stage travel. For each field of view, the x-y stage497

covered 4000 µm and three regions were imaged for each well. Prior to analysis, raw frames were compressed using498

jetraw compression software (jetraw, Dotphoton). Volumes were then de-skewed into standard xyz coordinates [21]499

and binned such that the final voxel size was 1x1x1 µm3. Image reslicing was performed using bi-linear resampling500

similar to the methods described in [41].501

Segmentation502

Segmentation of cells and nuclei was by active contour segmentation. Segmentation was performed with a threshold set503

at the mean volume grey value plus the standard deviation of the volume grey values and finding connected components504

(minimum connected component sizes were 50 µm3 and 512 µm3 for nuclei and cells respectively). These connected505

components defined sub-regions which were fully segmented.506

Outlier removal507

The three repeated experiments produced a segmented dataset of more the 7×104 single cells. Similar to [41], we508

removed cells and nuclei that expressed low CAAX-GFP transgene, as this caused inaccurate segmentation. We509

automatically removed cells with a maximum intensity less than the mean of all cell maximum intensities minus the510

standard deviation of all cell maximum intensities. We also removed cells based on their size. That is, if the cell volume511

< 512 µm3 or the nuclei volume < 50 µm3, the cell was removed from the dataset.512

513
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Due to cells being densely packed within each well, there were cases where the segmentation methods grouped two514

cells as one. To avoid this, we removed cells from the dataset that contained two nuclei within the segmented cell mask.515

516

After the above outlier removal and quality control, there was an additional round of quality control during the data517

analysis stage. Cells with a mean CAAX-GFP intensity of fewer than 70 units were removed from the study, and cells518

with a mean nuclear Histone-2B of fewer than 5 units were also removed from the study.519

Classical shape measurements520

Similar to previous our previous works [41], cell and nuclei classical shape measurements were calculated by the521

regionprops3 function in MATLAB. Further measurements were derived from these outputs as described in [41].522

3D rendering523

3D renders of intensity images are generated as a 3D projection with trilinear interpolation by using the volume viewer524

2.01 Fiji plugin [64]. 3D renders of cell masks are presented as 3D surface representations using isosurfaces in napari525

[65].526

Dynamic graph convolutional foldingnet527

The DFN follows the design of the FoldingNet [31] with a dynamic graph convolutional neural netowork (DGCNN) as528

the encoder [25]. This encoder takes a 3D point cloud as input, constructs a local neighbourhood (k-nearest neighbour)529

graph on these points and applies convolution-like operations on the edges of connecting neighbouring points. They530

call these operations edge convolution (EdgeConv). [25] shows translation-invariant properties of EdgeConv operations.531

For our experiments, we have chosen kg = 20 for our graph construction. We remove the final linear layer from the532

original architecture and replace it with one that outputs a feature vector of length 128. The decoder takes the feature533

vector, Z, as input and concatenates it with points sampled from a plane in 2D space. This is then passed through a534

series of two folding operations (defined in [31]) to output a reconstructed point cloud. The number of reconstructed535

points, m, does not need to be the same as the input number of points, n. The Chamfer distance (CD) [66] is commonly536

used to compare two PCs. We used the extended CD presented in [31] as our reconstruction error between input point537

cloud S and reconstructed point cloud Ŝ. The CD is defined in Equation 1.538

dCH(S, Ŝ) = max
{

1
|S|

∑
x∈S minx̂∈Ŝ ∥x− x̂∥2

1

|Ŝ|

∑
x̂∈Ŝ minx∈S ∥x̂− x∥2

} (1)

Initially, the DFN was trained on the ShapeNet dataset for 250 epochs and then we continued training on our point539

cloud representations of both cells and nuclei for another 250 epochs using Adam optimiser with e−6 weight decay. We540

used a batch size of 16 with an initial learning rate of 0.001/16 and an exponential learning rate decay scheduler. The541

DFN model was set to extract 128 features from each point cloud. All algorithms were implemented in PyTorch.542

Deep embedded clustering543

Deep embedded clustering (DEC) [57] is a specialised clustering technique that simultaneously learns feature rep-544

resentations and cluster assignments using autoencoders. Following the algorithm described in DEC, we propose545

learning autoencoder parameters θ which map the 3D shapes into embedded feature space Z as well as k cluster centres546

{µj ∈ Z}kj=1 of the embedded feature space Z. This is done in two phases:547

1. parameter initialisation with an autoencoder (through either ‘cellshape-voxel’ or cellshape-cloud tools) and548

2. parameter optimisation through simultaneous autoencoder reconstruction and minimisation of the Kullback-549

Leibler (KL) divergence between a target distribution and a distribution of soft-labels.550

The second step is done through the addition of a clustering layer (CL) on the features to refine them by learning551

features that are optimised to represent the 3D shape as best as possible as well as grouping similar and separating552

dissimilar objects. This part of the model works by initialising cluster centres using the k-means clustering algorithm553

on the embedded feature space outputted from a pre-trained autoencoder. These cluster centres are kept as trainable554

parameters. The clustering layer then assigns soft-labels to each input by mapping features to clusters (q) based on the555
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Student’s t-distribution as a kernel that represents the similarity between a feature vector (Z) and a cluster centre (µ):556

qij =

(
1 + ∥zi − µj∥2 /α

)−α+1
2

∑
j′

(
1 + ∥zi − µj′∥2 /α

)−α+1
2

(2)

This can be interpreted as the probability of assigning input i to cluster j, hence why this is a soft assignment. Soft-557

assignments with high probabilities are considered trustworthy and thus DEC designs a target distribution which raises558

this to the second power to place more emphasis on these confident assignments. Following DEC, we define the target559

distribution as:560

pij =
q2ij/fj∑
j′ q

2
ij′/fj′

(3)

We can then define the clustering loss as the Kullback–Leibler divergence between p and q:561

L = KL(P∥Q) =
∑
i

∑
j

pij log
pij
qij

(4)

The features at cluster centres become representations of ‘example’ or ‘template’ shapes of each shape class. [57]562

proposed training an autoencoder in the first phase (parameter initialisation) and then abandoning the decoder in the563

second phase to only fine-tune the encoder through the clustering loss alone. Variants of DEC since then have shown564

that this kind of fine-tuning may distort the embedded space and weaken its representativeness of the input [67, 68].565

Thus, we follow the procedure in [49] and have added the decoder back to the second phase of training and optimised566

both the reconstruction loss and the clustering loss together with a final loss defined as:567

L = Lr + γLc (5)

where γ ≥ 0 defines the magnitude that the clustering loss adds to the final loss.568

Predicting small molecule treatments569

Following similar procedures to [31, 69, 70, 71, 55], we used the trained DFN to extract features from each cell. These570

features were then used to train a linear support vector machine (SVM). For all experiments, we use one-versus-one571

SVM classifiers with an L2 regularisation parameter (C = 1), balanced class weights, and intercept scaling during572

training. We tested cytoplasm features and nuclei features alone and then combined them for ablation studies (Figure573

4A). We performed a 10-fold cross-validation for each experiment and report the mean accuracy. We used scikit-learn574

for these methods [72, 73].575

576

Feature importance577

Extreme gradient boosting (XGBoost) is a machine learning algorithm which uses gradient boosted decision trees for578

classification and regression tasks [74]. A benefit of using gradient boosting is that it is relatively simple to explore579

which features are important for the task at hand. Importance provides a score that indicates how valuable each feature580

was in the construction of the boosted trees in the model. The more a feature is utilised to make a classification, the581

higher its importance. This is based on the number of times a feature is used in a tree. We use this for interpreting which582

features are important for our classification tasks. We trained an XGBoost classification model to classify Blebbistatin583

and Nocodazole-treated cells based on the principal components of the cell shape features extracted using the DFN584

without the addition of the clustering layer. For methods involving XGBoost, we used the open-source Python package585

‘xgboost’ [74].586

Aligning 3D shapes to a common axis587

As a step towards rotational invariance, we propose converting the point cloud representations of 3D cells to their588

PCA-based canonical poses. PCA calculates 3 orthogonal bases or principal axis of point cloud data. This enables us to589

align original point clouds to the world Cartesian plane [60]. We briefly discuss how the canonical pose is calculated by590

following directly from [60]. We perform PCA on a given point cloud, P ∈ Rn×3, by:591

∑(
Pi −P

) (
Pi −P

)T
n

= EΛET , (6)
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where Pi ∈ R3 is the ith point of P,P ∈ R3 is the mean of P,E is the eigenvector matrix composed of eigenvectors592

(e1, e2, e3) (principal axes), and Λ = diag (λ1, λ2, λ3) are the corresponding eigenvalues. By aligning the principal593

axes to the three axes of the world coordinate, we obtain the canonical pose as Pcan = PE.594

595

[60] goes on to prove the rotational invariant property of Pcan. We calculate the canonical pose for each point cloud596

representation of a cell and use this as input to our DFN.597

Software availability598

The described software is available as a Python package which can be installed through pip and is avail-599

able at https://github.com/DeVriesMatt/cellshape. The main package is made up of four inde-600

pendent sub-packages available at https://github.com/Sentinal4D/cellshape-cloud, https://github.601

com/Sentinal4D/cellshape-voxel, https://github.com/Sentinal4D/cellshape-cluster, and https:602

//github.com/Sentinal4D/cellshape-helper.603
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