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Deep Vessel Segmentation

by Matthew DE VRIES

Blood vessel segmentation is a crutial challenge which assists directly in several clin-
ical fields. Many approaches exist from manual to computer-aided automatic seg-
mentation, usually based on some variant of the U-Net. The invention of attention
gates has taken the deep learning community by storm, particularly in semantic
segmentation tasks with many state-of-the-art incorporating some form of attention
gates. Attention is essentially a mechanism within a network which weights fea-
tures by relative importance to a problem and then uses these features to solve the
problem. Soft-attention is used in this project, where the weights of importance
are learned through the standard backpropagation algorithm. This project explores
vessel segmentation techniques using deep learning through the U-Net and builds
on the current state-of-the-art known as the Iternet, to incorporate attention gates
into its base module. Pre-processing included CLAHE, and green-channel extrac-
tion. A patch-based approach to training was incorporated. Experiments were
conducted on the varying publicly available retinal blood vessel datasets; DRIVE,
STARE, CHASE_DB1, and HRF which show the significant impact these attention
gates can have on the performance of models, specifically in terms of sensitivity.
Furthermore, attempts were made to use the trained models on different datasets
of vessels from chloroplast in Bienertia chlorenchyma cells. Work will continue on
this.
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Chapter 1

Introduction

In the medical industry nowadays, imaging is a crucial component in many appli-

cations. These applications continue throughout the clinical process in diagnostic

settings, as well as an addition in preparation before surgical operations. The devel-

opments of imaging techniques such as Magnetic Resonance Imaging (MRI), Com-

puter Tomography (CT), Fundus Photography and Nuclear Medicine offer doctors

with high-resolution images necessary to perform an accurate analysis. Segmenta-

tion is usually a critical step for the task of processing an excessive amount of medi-

cal images with great detail.

1.1 Background

Generally, image segmentation is the process of separating an image into numerous

different parts. Instead of looking at the entire data presented in an image alto-

gether, it may be better to centre on a certain region-based semantic object in im-

age segmentation (Sulaiman et al., 2016). The goal of image segmentation is, there-

fore, to search for the meaningful regions which represent parts of certain objects

for more straightforward analysis (Stockman and Shapiro, 2001). Manual segmen-

tation can be an expensive procedure concerning time producing results which lack

reproducibility or suffer from inter-observer and intra-observer variability. On the

other hand, automatic methods require at least one expert clinician to evaluate the

segmentation results as a gold standard. Algorithms used on medical images may

require a more reliable application background than those used for standard image

processing. Furthermore, high levels of noise usually interfere with medical images

(Zaidi and Erwin, 2007); thus algorithms should be complex and robust enough to

handle the task.
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1.2 Motivation

Blood vessel analysis plays a vital role in numerous clinical fields (Ramakonar et

al., 2018; De Momi et al., 2014; Folkman, 1995; McDonald and Baluk, 2002; Miri et

al., 2017). Automatic blood vessel segmentation techniques are of significant inter-

est in healthcare research as they could assist clinicians drastically. In the past few

years, with the explosions of deep learning, numerous algorithms have been pro-

posed which can perform computer-aided segmentation.

Retinal blood vessels consist of a central retinal artery, vein, as well as their

branches. This central artery, also known as the arteria centralis retinæ, penetrates

the optic nerve with its accompanying vein where it branches into superior and in-

ferior vessel branches. In a tree-like fashion, the branching process continues cre-

ating a network of connected paths varying in size. Nutrients pass from the blood

through the thin vessel branches called capillaries. Blockages or leaks in these capil-

laries cause most problems related to retinal blood vessels. There exists a close rela-

tionship between the artery and the retina, making the eyeball a window into one’s

health. In fact, “it is the only way for doctors to inspect the blood vessel system in

the human body in vivo”(Li et al., 2019). Direct analysis of retinal blood vessels is

highly beneficial in its accuracy and simplicity in terms of its non-invasive nature.

Thus segmentation of these vessels is crucial in the diagnostic process of many bod-

ily disorders.

Retinal blood vessel analysis initially found a use for detection of glaucoma, di-

abetic retinopathy, retinal neoplasms, and other retinal focused issues. Over time,

research found that their structures may present significant indicators in many other

diagnostic procedures such as that in cardiovascular and cerebrovascular disease,

hypertension, and atherosclerosis (Dougherty, 2009). Cheung, Wong, and Hodgson

(2009) described how retinal blood vessels might lay out “a lifetime summary mea-

sure of genetic and environmental exposure”, thus proving their substantial merit

as a risk marker for proceeding systemic disease in the patient.

Numerous observable characteristics are present in retinal blood vessels, with
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the transparency, colour and diameter carrying meaningful information in diagnos-

tic procedures. In order to measure these, accurate depictions of the vessel bound-

aries need to be in place, which is done through vessel segmentation. Automatic

blood vessel segmentation is a challenging task, but automatic segmentation of reti-

nal blood vessels presents several problems making the task even more arduous.

Retinal images have extremely low contrast between background and vessel regions

due to the image consisting of mostly red-band pixels. There also exist problems of

unbalanced illumination in a single raw image, making it challenging to determine

vessel from the background. Furthermore, retinopathy symptoms include colour

and shape variations out of the norm, posing a problem causing algorithms miss-

classifying noise in images.

Another interesting use-case for retinal blood vessel segmentation is presented

in biometrics. Vessel maps are unique for each individual, much like a fingerprint or

one’s DNA. Retinal recognition is built directly off the basis of analysing vessel struc-

tures as biometric identifiers. More so, the structure of retinal blood vessels is not

entirely genetically determined, allowing identical twins to have different patterns

from one another. The retinal vessels are altered through diseases such as glaucoma

and diabetes; however, the structure remains unchanged throughout a person’s life.

The consistent nature allows retinal identification systems to be the most reliable

and precise biometric behind DNA.

1.3 Research questions

The main aim of this project is to aid clinical fields in diagnosis, both planning and

actual treatment, as well as evaluation and follow up. To this end, this project will

explore automatic vessel segmentation techniques which can be broadly used across

vessels in different parts of the anatomy and varying imaging modalities. Several

actualities inspire this idea.

Firstly, manual segmentation of blood vessels carries an exorbitant price in terms

of time. Along with this, it lacks both inter- and intra-operator reproducibility and

repeatability. Using a typical deep-learning approach across the board as a tool for
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semi-automatic or automatic segmentation of blood vessels will significantly de-

crease this time as well as lean towards a more robust, and reproducible method

gaining the trust of more doctors. Secondly, the importance of analysing retinal

blood vessels is made clear from the section above. Thirdly, there exist numerous

blood vessel segmentation techniques in the literature; however, these methods are

being improved year-on-year with more room for improvement.

With the recent introduction of attention gates and its significant impact on deep

learning, especially in semantic segmentation tasks (Li et al., 2018; Fu et al., 2018;

Schlemper et al., 2019; Sinha and Dolz, 2019; Guo et al., 2020; Niu et al., 2020; Zhao

et al., 2020b), it is believed that incorporating attention into the current models could

increase model performance without undertaking too much computational over-

head. Essentially, this is achieved through a mechanism where a network weights

features by relative importance to a task, and then uses these features to achieve the

task. Coefficients, known as attention coefficients, are multiplied to outputs of the

layers in a network, allowing them to focus on target regions and ignore irrelevant

information. Attention is explain in more detail in Chapter 3.3.2. It is worth noting

that Guo et al. (2020) recently proved how the addition of spatial attention mecha-

nisms to the original U-Net could improve the state-of-the-art sensitivity.

Furthermore, existing deep learning models have mostly relied on local appear-

ances learned on the regular image grid, without considering the graphical structure

of the vessel shape. Effective use of the strong relationship that exists between vessel

neighbourhoods can help improve the vessel segmentation accuracy. We have seen

one example in the literature of a method utilising the graphical structure of vessels

through graph neural networks. Implementation of this was left as the computa-

tional cost significantly outweighed the performance increase.

We consider the following research questions in order to understand which seg-

mentation techniques and deep learning architectures are best suited for segmenta-

tion of tubular structures across the board:

1. Can an end-to-end deep-learning vessel segmentation approach for different

anatomical regions and various imaging modalities be used?



Chapter 1. Introduction 5

2. Is there a benefit in incorporating attention into segmentation networks?

3. Can trained knowledge on vessel datasets of one region in the body be trans-

ferred to other anatomical regions?

1.4 Structure of the dissertation

The proceeding chapter (Chapter 2) introduces and discusses the relevant break-

throughs in the literature, allowing us to gain a broad understanding of where the

research has been and hypothesise where it might be beneficial to explore. Chapter

3 describes the methods used in this project which is aided by Appendix A for com-

pleteness sake. Chapter 4 presents the databases used in the experimentation as well

as pre-processing steps and the proposed framework of experimentation. Chapter 5

presents the results, with Chapter 6 discussing the results and concluding the project

as well as presenting future research prospects.
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Chapter 2

Review of Literature

In order to gain an in-depth understanding of the topic of vessel segmentation, one

needs to familiarise with what has been done. This allows us to “stand on the

shoulders of giants” and push the boundaries in science. Segmentation tasks oc-

cur in numerous different fields from retail to self-driving cars. This review will

focus on segmentation in medical image analysis and, in particular, those based on

deep learning. We briefly introduce the advances made in general medical image

segmentation continuing onto specific tasks of vessel segmentation and even more

specifically, retinal vessel segmentation.

2.1 General medical image segmentation

General medical image segmentation refers to the automatic segmentation of or-

gans, tumours, or any other structure present in medical images. The most common

of these are tumour and brain lesion segmentation.

Region growing segmentation is an iterative process which looks at neighbour-

ing pixels of primary seed points and determines whether or not the pixel neigh-

bours should be added to the region. Afifi et al. (2015) proposed a region growing

segmentation algorithm which combined the traditional seed region growing with

the local search process to increase performance. The method finds the seed point

automatically for region growing and finds a threshold utilising an average of the

minimum and the maximum grey value of the image. These algorithms were trialed

on real and simulated databases. Ahlem and Layachi (2015) proposed a technique

for automatic seed point selection for seed regions growing in mammogram im-

ages. They applied a threshold of the image for binary intensity, and divided the
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image into black and white regions. Black regions were ignored, while the white

were deemed as the suspected region. Original images were then reverted where

k-nearest neighbours was applied to determine statistical features of foundation en-

tries and find the seed point.

Segmentation is an extremely customary subject of papers which apply deep

learning to medical image analysis, with some examples shown in Figure 2.1, and

therefore has also seen an extraordinary diversity in methodology, which includes

the construction of unique convolutional neural network (CNN)-based architectures

as well as the application of recurrent neural networks (RNN) (Litjens et al., 2017a).

The most famous of these novel architectures used in medical imaging is U-Net.

Ronneberger, Fischer, and Brox (2015) proposed this network as well as a training

strategy which utilises data augmentation in order to use available sample images

more effectively and efficiently. The architecture is made up of paths to capture con-

text as well as those that allow accurate localisation. They were able to exhibit that

such network can be trained end-to-end from few images, outperforming a sliding-

window convolutional network, which was the previous best method. Moreover,

U-Net was fast which is essential for practical applications in industry. It is claimed

that “the state-of-the-art models for image segmentation consist of variants of the

encoder-decoder architecture used in U-Net” (Zhou et al., 2018a).

Çiçek et al. (2016) used a similar approach for 3D data by introducing a network

for volumetric segmentation which is able to learn from sparsely annotated volu-

metric images in order to give a dense 3D segmentation. The architecture extends

that of the previous U-Net from Ronneberger, Fischer, and Brox (2015) by replacing

2D operations with 3D equivalents.

Milletari, Navab, and Ahmadi (2016) proposed an extension to (Ronneberger,

Fischer, and Brox, 2015) that incorporates ResNet-like residual blocks for 3D image

segmentation. Their CNN was trained on MRI volumes of prostate, which learned

to segment the whole volume in one go. A novel objective function was introduced,

based on Dice coefficient (Dice, 1945), which was optimised during training. They

were able to deal with situations which presented a significant imbalance between

the number of background and foreground voxels. Data augmentation was done
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FIGURE 2.1: Collage of some medical imaging applications in which
deep learning has achieved state-of-the-art results. From top-left to
bottom-right: mammographic mass classification (Kooi et al., 2016),
segmentation of lesions in the brain image from (Ghafoorian et al.,
2016), leak detection in airway tree segmentation (Charbonnier et
al., 2017), diabetic retinopathy classification (Grinsven et al., 2016),
prostate segmentation (top rank in PROMISE12 challenge), nodule
classification, breast cancer metastases detection in lymph nodes, hu-
man expert performance in skin lesion classification (Esteva et al.,
2017), and state-of-the-art bone suppression in x-rays, image from

(Yang et al., 2017) [Source: (Litjens et al., 2017b)]

in a way which applies random non-linear transformations as well as histogram

matching in order to deal with the limited number of annotated volumes available

for training. Their approach achieved good performance on difficult data while re-

quiring much less processing time.

Zhou et al. (2018a) presented U-Net++, a newer, more robust network for seg-

mentation of medical images than U-Net. Their architecture is a “deeply-supervised

encoder-decoder network where the encoder and decoder sub-networks are con-

nected through a series of nested, dense skip pathways” (Zhou et al., 2018a). The

skip pathways aimed at decreasing the gap between the feature maps of the decoder

and encoder networks. They were able to show that the optimiser would have an

easier learning task when these feature maps similar.

RNNs have become increasingly popular for the problem of segmentation over

recent years. For example, Xie et al. (2016) used a spatial clockwork RNN in order

to segment H&E-stained histopathology images. This network took prior spatial in-

formation of the current patch into account.
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Stollenga et al. (2015) first used a 3D Long Short Term Memory (LSTM) network

with convolutional layers in multiple directions. They re-arranged the traditional

order of computations in multidimensional-LSTM in pyramidal schemes. The fol-

lowing PyraMiD-LSTM was simple to parallelise, which is beneficial for 3D data

such as stacks of brain slice images. Their PyraMiD-LSTM achieved state-of-the-art

results of pixel-wise brain image segmentation on MRBrainS13 (van Opbroek, van

der Lijn, and de Bruijne, 2013).

Andermatt, Pezold, and Cattin (2016) presented an RNN to segment 3D volumes

of biomedical images. Their network consisted of multi-dimensional gated recurrent

units. They applied an online data augmentation techniques, allowing for accurate

estimations with a smaller dataset. Their method performed amongst the state-of-

the-art in terms of speed, accuracy and memory efficiency on a popular brain seg-

mentation challenge dataset.

Incorporating both U-Net architectures with RNN would then prove beneficial.

Chen et al. (2016) utilised a combination of bi-directional LSTMs with 2D U-Net’s to

segment regions in 3D microscopy images. This was the first deep learning frame-

work for 3D image segmentation which explicitly leveraged 3D image anisotropism.

Poudel, Lamata, and Montana (2016) proposed a recurrent fully-convolutional

network (RFCN) which learnt representations of the image from a full group of 2D

slices with the ability to leverage inter-slice spatial dependencies through memory

units. Their RFCN simplified the analysis pipeline and enabled real time applica-

tions by combining detection and segmentation into a single algorithm.

Oktay et al. (2018) incorporated attention gates (AGs) into the standard U-Net

architecture, allowing their model to be robust to various shapes and sizes of target

structures. Irrelevant regions were suppressed in the model, allowing more focus to

be placed on regions of interest. It was seen that the addition of these AGs added

minimal computational overhead accompanied by a significant increase in model

sensitivity and predictive accuracy. The main focus of the paper was on pancreatic

segmentation, however it was shown how the Attention U-Net could be used across
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varying datasets of different sizes to improve performance.

Summarising, segmentation in medical imaging has seen an extreme incorpora-

tion of deep learning related methods. Novel architectures have been designed to

directly solve segmentation. These have obtained significant results, which often

improved those obtained with FCNs (Litjens et al., 2017a).

2.2 Vessel segmentation in various parts of the anatomy

2.2.1 Unsupervised approaches

Hassouna et al. (2006) presented a statistical method for the extraction of 3D blood

vessels from time-of-flight Magnetic Resonance Angiography (MRA). The histogram

of the pixel intensity was classified as either background noise or blood vessel. The

background noise class was modelled by one Rayleigh and two Gaussian distribu-

tions, while the blood vessel class was modelled by a single Gaussian distribution.

The parameters of the Rayleigh and Gaussian distribution parameters were esti-

mated with use of the Expectation Maximisation (EM) algorithm (Dempster, Laird,

and Rubin, 1977). In order to improve segmentation quality in regions of vascu-

lar signal loss, spatial constraints through Markov Random Field (MRF) modelling

were included. For this reason, MRF modelling was extremely useful when images

presented with high levels of noise.

Xu et al. (2010) utilised Gaussian Mixture Models (GMMs) to fit stochastic dis-

tributions of brain vessels in MRI images. A pre-processing step through mixed-

integer programming was used to reduce the amount of elements mixed. Structural

equation modelling estimated the parameters of the GMM. Small branches of the

vessels in the brain were able to be found with this technique with fast speeds of

convergence.

Goceri, Shah, and Gurcan (2016) utilised K-means clustering to segment liver

vessels. Results from initial segmentation are iteratively refined with linear contrast

stretching in an attempt to construct a mask image. Regions of the vessel are then

reconstructed with the marker image and the mask from the initial segmentation
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and refining stages respectively. The technique showed an adaption to varying pixel

intensity distributions in the image.

Shalaby et al. (2018) extracted 3D cerebrovascular from time-of-flight MRA. The

multi-model nature of MRA meant that through the identification of probability

models of voxel intensities, vessel structures can easily segmented through voxel-

wise classification. These models were found by approximating the distribution of

intensities with linear combinations of discrete Gaussians. Experiments on real and

synthetic data showed strong performance.

Ghazal, Al Khalil, and El-Baz (2018) presented a parametric mixture model for

cerebrovascular segmentation. Spatial interactions defined by Markov-Gibbs ran-

dom field models and statistical intensities of Gaussian models were used to refine

the segmentation results. The proposed technique made use of a two-stage segmen-

tation with varying sized Gaussian kernels. Strong performance was shown on 2D

slices of 3D MRA data.

Gur et al. (2019) developed an unsupervised method for blood vessel segmen-

tation based on the field of active contours. A novel loss function, inspired by the

morphological active contours without edges (Chan and Vese, 2001) optimisation

technique is introduced. This allows for computational efficiency through morpho-

logical curvature operators. Their method outperformed supervised methods 3D

and 4D datasets.

Wang et al. (2020) presented VasNet, an unsupervised transfer-learning vasculature-

aware technique for pathovascular segmentation from small unlabelled sets of an-

giography images. The method is based on the Domain Adversarial Neural Net-

work (DANN) (Ganin et al., 2016). The algorithm produces a range of information

from vascular structure to blood flow rates.

Fan et al. (2020) automated cerebrovascular segmentation in an unsupervised

fashion based on deep neural networks and Hidden Markov Random Fields (HMRF).
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The model is trained with labelled HMRF rather than annotated images. The algo-

rithm was tested on time-of-flight magnetic resonance angiography images outper-

forming common HMRF-based segmentation techniques in terms of Dice coefficient

and pixel classification.

2.2.2 Supervised approaches

Nekovei and Ying Sun (1995) were one of the first to utilise machine learning tech-

niques for vessel segmentation. They used a sliding window approach with a feed-

forward neural network to classify centre pixels in small windows of angiograms.

The window moved pixel by pixel across the entire image. A three-layer network

architecture was shown to be sufficient for the job, outperforming other common

approaches.

Zeng et al. (2016) utilised extreme learning machines (ELM) to segment liver ves-

sels from CT images. Offset medialness, Sato, and Frangi filters were used in extract-

ing vessel map features. Pre-processing steps involved noise reduction techniques

and nonlinear anisotropic diffusion filters to reduce the effect of inhomogeneous

backgrounds. The method showed fast computation with leading results among

other methods tested on their dataset.

Charbonnier et al. (2016) proposed a technique which improved the segmenta-

tion of airways in thoracic CT by detecting and then removing leaks. This leak detec-

tion was described as a classification problem, such that a CNN was used perform

the classification task. They made use of the fact that several segmentations could

be extracted from a single algorithm by “changing the parameters that influence the

amount of leaks and the tree length” (Charbonnier et al., 2016). This allowed the

segmented airway tree length to be increased.

Smistad and Lovstakken (2016) presented an algorithm which made use of a

CNN for detecting blood vessels from B-mode ultrasound images. This method had

the ability to dictate the size and location of the vessels in the images in real-time.
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Tetteh et al. (2018) presented DeepVesselNet, a network which uses deep learn-

ing and is tailored to overcome difficulties faced when extracting vessel networks or

trees and corresponding features in 3D angiographic volumes.

Livne et al. (2019) utilised a U-Net architecture for brain vessel segmentation.

Their network architecture was very similar to that presented in Ronneberger, Fis-

cher, and Brox (2015) with the only difference in the number of channels being

halved in each layer. Two-dimensional patches of different sizes were extracted from

the images as a pre-processing step in order to be fed as input to the model. Strong

performance was shown on the PEGASUS study with discussion of improvements

for small vessel segmentation.

2.3 Retinal vessel segmentation

There have been multiple algorithms proposed right from the preliminary attempts

to utilise deep learning for vessel segmentation (Nekovei and Ying Sun, 1995; Soares

et al., 2006; Staal et al., 2004a). So far, these algorithms have mostly been applied to

retinal images, since there exist several publicly available labelled databases (Moccia

et al., 2018a). Again, we explore the deep learning approaches now to retinal vessel

segmentation grouped into unsupervised and supervised approaches.

2.3.1 Unsupervised approaches

Bhuiyan et al. (2007) presented a technique for texture based blood vessel segmenta-

tion to overcome the complication of massive variations in local contrasts of minor

vessels. They used Gabor energy filters to analyse texture features extracted from

retinal images in order to construct a feature vector for each pixel. Feature vectors

were classified into vessel and non-vessel based on the properties of textures using

fuzzy C-means clustering.

Al-Rawi and Karajeh (2007) used genetic algorithms to find optimal parameters

of matched filters for vessel segmentation tasks in retinal imaging. Genetic algo-

rithms were used on the testing set of the DRIVE database to compute parameters
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optimising sensitivity of the model.

Kande, Subbaiah, and Savithri (2010) proposed a novel automated vasculature

segmentation approach in retinal images. The intensity information from green and

red channels of an image was used in order to rectify no-uniform illumination in the

colour fundus data. Enhanced blood vessels, obtained through match filtering, were

segmented using spatially weighted fuzzy C-means clustering. These preserved the

spatial structure of the vessel graphical segments. State-of-the-art unsupervised per-

formance was shown on the DRIVE and STARE databases.

Lupaşcu and Tegolo (2011) proposed an unsupervised segmentation methodol-

ogy of retinal blood vessels. They trained a Self Organising Map (SOM) and clus-

tered the map units into two classes using K-means. The whole image is then, again,

used as input to the SOM with the vessel network finally processed using a hill-

climbing technique on the connected parts of the segmented output image.

Yu et al. (2012) presented a computationally fast and simple algorithm for vessel

segmentation. By computing the eigenvalues of the Gaussian filtered image, a prob-

ability map of the vessel was produced. In order to segment this map, local cross-

entropy thresholding of the second order was then applied. A post-processing step

was then performed in an attempt to reduce false positives. The method showed

state-of-the-art results at much higher speeds than competing unsupervised meth-

ods of the time on the DRIVE, STARE and HRF databases.

Roychowdhury, Koozekanani, and Parhi (2015) exploited GMMs in a novel three-

stage vessel segmentation algorithm. Pre-processing included the extraction of two

binary images; one following high-pass filtering, and the other following morpho-

logical reconstructed enhanced image for the vessel map. A post-processing stage

was included to combine significant portions of blood vessels with classified vessel

pixels. Results suggest state-of-the-art comparable accuracies on the DRIVE, STARE

and CHASE_DB1 databases.

Strisciuglio et al. (2015) proposed a vessel segmentation method based on Com-

bination of Shifted Filter Responses (COSFIRE) (Azzopardi and Petkov, 2013). Their
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Bar-selective COSFIRE (B-COSFIRE) approach uses nonlinear filtering through a

combination of difference-of-Gaussian filters. The two B-COSFIRE filters presented

respond along vessel and at vessel endings respectively. Through the summation of

the response maps, a vessel map is segmented. Promising results with fast compu-

tation was achieved on DRIVE, STARE, CHASE_DB1, and HRF databases.

Lahiri et al. (2016) automated blood vessel segmentation through unsupervised

hierarchical feature learning through the ensemble of a multi-level stacked auto-

encoder. It was seen that training the auto-encoders in an ensemble fashion may di-

versify the dictionary learnt of visual kernels for the segmentation problem. Highly

significant accuracies were shown on the DRIVE dataset.

Zhang et al. (2016) utilised a filter-based approach for segmenting blood vessels

in retinal images. Filters were based rotating 3D frames in functions on the Lie-group

domain orientation and positions. 3D orientation scores are produced through lift-

ing 2D images through wavelet-transforms. Vessels are enhanced from the lifted

domain through Gaussian derivatives of the second order, perpendicular to the line

structures. After this multi-scale filtering, outputs are projected to 2D giving en-

hanced vessel maps from which a binary segmentation is computed by means of

thresholding. The method proved extremely computationally efficient with state-of-

the-art results on a number of datasets.

Nowińska, Yavuz, and Köse (2017) developed segmentation technique involving

both K-means and fuzzy C-means clustering in order to obtain segmented vessel

trees. Vessel structures were enhanced through Gaussian, Gabor, and Frangi filter-

ing before utilising a top-hat transform. The output of the clustering algorithms was

passed through a post-processing step in an attempt to rid incorrectly segmented re-

gions which were isolated. This method showed diagnosis acceptable performance

on the DRIVE and STARE databases.

Lahiri et al. (2018) extended their work in Lahiri et al. (2017) through the addi-

tion of an unsupervised loss function and a structured prediction-based architecture.

Their method is proposed to learn in a supervised and unsupervised manner under

multitask objective settings. Performance was demonstrated on vessel segmentation
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tasks on the DRIVE and STARE databases showing strong performance.

Chalakkal and Abdulla (2018) proposed the use of curvelet transform and line

operators for the segmentation of small fringe vessels. An isotropic diffusion filter-

ing and adaptive histogram equalisation were used to enhance the vessel map as a

pre-processing step. Post-processing included the removal of isolated segmented ar-

eas. Results outperformed state-of-the-art supervised and unsupervised techniques

in sensitivity and accuracy on the DRVIE dataset.

Bilal Khomri (2018) segmented vessel maps through an unsupervised technique

founded upon the elite-guided multi-objective artificial bee colony (EMOABC) (Xi-

ang, Zhou, and Liu, 2015) algorithm. In an attempt to minimise noise response from

lesions, the algorithm makes use of an energy curve function which computes opti-

mal thresholding values. Computational efficiency and speed was achieved through

a stopping criterion on the EMOAC algorithm’s parameters. This technique boasted

simplicity and speed while outperforming meta-heuristic algorithms on the DRIVE

and STARE databases.

Abbas et al. (2019) utilised conditional patch-based GANs. Previous deep-learning

approaches have given equal importance to thick and thin vessels, whereas this

method utilised a patch-based generator and discriminator networks conditioned

on the sample data as well as including an extra loss function to optimise the learn-

ing of thin and thick vessel structures separately. State-of-the-art performance was

shown on both the DRIVE and STARE databases.

Liu, Gu, and Lu (2019) presented an unsupervised technique utilising ensem-

bling to combine multiple segmentation results of vessel segmentation in retinal

images. The ensemble strategy allows the exploitation of advantages of numerous

methods. State-of-the-art performance was shown on DRIVE, STARE, CHASE_DB1

databases.

Shah et al. (2019) presented a simplistic method based on Gabor wavelets and

multi-scale line detection to enhance and segment vessel maps in retinal images.
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The Gabor wavelet is well suited for directional feature detection as well as enhanc-

ing structures with varying widths, such as vessels. Results proved state-of-the-art

performance on DRIVE, STARE, and HRF databases albeit with similar techniques.

Li, Comer, and Zerubia (2020) based a novel unsupervised vessel segmentation

approach on their previous connected tube marked point process (MPP) model (Li,

Comer, and Zerubia, 2018). Following a pre-processing step, the vessel architecture

is extracted using thee connected tube MPP. The vessel is then segmented through

K-means clustering. Accurate results were seen on both the DRIVE and STARE

databases as well as a high G-means score.

Yang et al. (2020) used a combination of deep convolutional adversarial networks

with short connection and dense blocks, dubbed SUD-GAN, for retinal vessel seg-

mentation tasks. The GAN was set up such that the generator acquired a U-shape

encoder-decoder architecture with gradient vanishing prevented through the inclu-

sion of short connection block between convolutions. The discriminator is fully con-

volutional except for a single dense connection in the middle part of the network

in an attempt to magnify its discriminatory ability. This method outperformed the

state-of-the-art on the DRIVE and STARE databases through its ability to more accu-

rately locate the edge of vessels.

Liu et al. (2020) used variational intensity cross channel encoders to segment ves-

sels from Optical Coherence Tomography (OCT) angiography in an unsupervised

manner. This approach tracks vessel masks through the exploitation of a common

underlying structure shown in two OCT angiography images of the same area but

captured with differing devices. Results show their method outperforms commonly

used methods.

Zhao et al. (2020a) used general adversarial learning with a large receptive field

for vessel segmentation in the context of retinal imaging. The generator outputs a

realistic vessel map which the discriminator differentiates between that and sam-

ples drawn from database. Optimisation was catalysed by using a residual module

in both the generator and discriminator networks. The receptive field was enlarged
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dilated convolutions in the generator network which avoided an increase compu-

tational overhead. State-of-the-art performance was shown on DRIVE and STARE

databases in many metrics.

Rocha et al. (2020) made use of 2D Gabor wavelets and contrast limited adap-

tive histogram equalisation to segment and enhance blood vessels in retinal images.

These methods incorporated both mask and edge detection to perform state-of-the-

art unsupervised segmentation on the DRIVE and STARE databases in terms of sen-

sitivity.

2.3.2 Supervised approaches

Staal et al. (2004b) made use of the k-nearest neighbours algorithm to classify feature

vectors which made use of properties of line elements extracted from retinal images.

The line elements were created through the extraction of image ridges which cor-

respond to the vessel tree. Experiments conducted on two separate datasets show

strong performance over other methods of the time.

Soares et al. (2006) developed a method to classify each pixel in retinal images

as a vessel or non-vessel on the feature vector for that pixel. Feature vectors were

created using 2D Gabor filters and intensity. Simple Bayesian classifiers were used

on these feature vectors which had the advantage of fast computation. Strong per-

formance was shown both DRIVE and STARE databases with state-of-the-art results

shown on the DRIVE database in terms of AUC.

Rodrigues et al. (2013) segmented retinal vasculature using OCT images. The

study begun by extracting a group of 2D fundus reference images from 3D OCT and

then using this as input to Support Vector Machines (SVM). The tuning parameters

and the kernel of the SVM played a large role in the effectiveness of the method.

The method had the ability to effectively segment pathological and healthy vessels.

Therefore, this method can be used in the study of disease progression.
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Fu et al. (2016) developed a novel deep learning approach to vessel segmentation

which made use of boundary detection. The technique combined conditional ran-

dom fields and multi-scale CNNs to approximate long-range interactions between

pixels and learn hierarchical representations respectively. Along with efficient com-

putation, the method produced state-of-the-art performance on DRIVE, STARE and

CHASE_DB1 databases.

GeethaRamani and Balasubramanian (2016) used a combination of unsupervised

and supervised techniques to segment retinal vasculature in fundus images. Feature

vectors are created from images pre-process though Gabor filtering, half-wave rec-

tification and colour transformations. Dimension reduction of these features was

established by Principal Component Analysis. Clustering was then used to label

pixels as vessels or non-vessels where the non-vessel cluster went through a further

step involving ensemble classification by tree-based methods. A combination of the

clustering and the ensemble classification gave the final segmentation result. The

technique performed well in terms of accuracy on the DRIVE dataset.

Aslani and Sarnel (2016) developed a method which utilised B-COSFIRE filter re-

sponses as features for supervised segmentation of retinal blood vessels. A number

of other features were combined into a 17D feature vector for each pixel in the image

which included Gabor filter responses and “vesselness” measures. Random forest

classifiers were then used to classify each pixel based on these features in order to

gain a final segmentation. State-of-the-art performance was shown on both DRIVE

and STARE databases in both pathological and cross training cases.

Li et al. (2016) remoulded the task of vessel segmentation from pixel-wise classi-

fication to a cross-modality data transformation problem with the modalities being

the colour retinal image and the vessel map. Novel neural networks were used to

learn the mappings from the modalities. Their algorithm boasted the lack of pre-

and post-processing techniques with the input being the green channel of the retinal

fundus image. State-of-the-art results in terms of specificity, accuracy and sensitivity

were achieved on DRIVE, STARE and CHASE_DB1 datasets.

Orlando, Prokofyeva, and Blaschko (2017) proposed a method which was based
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upon discriminatively trained fully connected conditional random field (FCCRF)

models. SVMs were trained in a supervised manner to learn the model parame-

ters. Fully connected models allowed to near real-time inference where the condi-

tional random fields had the advantage of dealing with elongated and thin struc-

tures present in vessels over previous methods. Strong performance was shown on

DRIVE, STARE and CHASE_DB1 databases with potential shown for use in segmen-

tation of other tubular structures in medical imaging.

Tetteh et al. (2017) presented a feature extraction method based on inception net-

works for segmentation tasks through pixel classification. They extracted features

through convolutions. Layers of fully convolutional networks were stacked up on

the feature extraction layers. The method was tested for segmentation purposes,

proving to outperform most existing hand crafted or deterministic feature schemes

found in literature. Furthermore, they proposed methods of extending the feature

extraction scheme to handle 3D datasets.

Zhu et al. (2017) proposed a method utilising an Extreme Learning Machine

(ELM) for retinal vessel segmentation. It began by extracting a set of discrimina-

tive feature vectors for each pixel of the fundus image. Next, they constructed a

matrix for individual pixels of the training dataset which were based on those fea-

ture vectors. This was used as input to the ELM. The ELM classifier produced a

binary retinal vascular segmentation output. They then implemented an optimisa-

tion or de-noising process in order to remove regions less than 30 pixels which are

isolated from the retinal vascular.

Xiao et al. (2018) proposed an architecture built on top of the original U-Net

which incorporated weighted attention mechanisms, dubbed weighted Res-UNet.

Skip connections based on He et al. (2015) were added to learn more discriminative

features. Pre-processing included contrast-limited adaptive histogram equalisation

(CLAHE) to enhance contrast in the image. A patch-extraction approach was used

to increase the dataset through horizontal and vertical flips. The weighted attention

mechanism made use of the circular template describing the region of interest. This

allowed the model to only focus on the region of interest while avoiding noisy back-

ground. Strong performing segmentation results were shown on the DRVIE and
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STARE databases in terms of sensitivity and accuracy.

Jiang et al. (2018a) proposed a method for retinal vessel tree segmentation. This

was based on using pre-trained CNNs as feature extractors through transfer learn-

ing. This method simplified the common retinal vessel segmentation issue from

segmentation of whole slide image to regional vessel element recognition and result

merging. The study reported state-of-the-art results.

Liu et al. (2018) utilised a deep CNN to segment the vessel in fundus images.

Furthermore, they made use of a dense connection method in series. Here, the final

layer of the network may be used as the features of the first layer, in order to prevent

the gradient from disappearing. State-of-the-art vessel segmentation results were

reported.

Alom et al. (2018) proposed variants of the U-Net which incorporated residual

and recurrent blocks. Two models, RU-Net and R2U-Net, which were recurrent

CNNs and recurrent residual CNNs respectively incorporated with the U-Net. Ad-

vantages from all included techniques were utilised in a way which proved state-

of-the-art performance on blood vessel segmentation in retinal images, skin cancer

segmentation, and segmentation of lesions in the lung. Models were trained on

patches extracted from the raw image and model hyperparameters are reported for

easing replication of results.

Zhuang (2018) presented a network architecture inspired by U-Net and its vari-

ant, Recurrent Residual convolutional U-Net (R2-UNet), for retinal vessel segmen-

tation. Their multi-branch CNN, LadderNet, included more information paths than

their ancestor architecture. The LadderNet can be described as a chain of U-Net ar-

chitectures with skip connections between the two U-Nets. Their implementation

included chains of more than two U-Nets to produce a highly complication segmen-

tation model. Their model proved superior over previous state-of-the-art methods

with a downfall of being computationally expensive.

Yan, Yang, and Cheng (2018) introduced a segmentation loss to be used in deep

learning-based vessel segmentation algorithms. With the aim of balancing out the
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loss calculation in order to learn thin vessel features, they jointly adopted pixel-wise

and segment-level losses. Essentially, their contribution added segment-level loss to

the widely used pixel-wise loss in the literature. A problem with pixel-wise losses

is their thickness inconsistency in the thinner vessels. The segment-level loss at-

tempted to measure this inconsistency of each individual segmented vessel rather

than the segmented pixel. In order to construct this loss, manual segmentation re-

sults are used to segment vessels from the vessel tree. This loss was built on a pixel-

wise loss except with an adaptive weight matrix based on a diameter consistency

measurement. Experiments on the DRIVE, STARE, HRF, and CHASE_DB1 datasets

show that the incorporation of this loss criterion into current models significantly

improved performance.

Hu et al. (2019) proposed variation of U-Net for vessel segmentation in fundus

images of the retina. Their Minimal U-Net (Mi-UNet) design reduced the number of

parameters in the standard U-Net architecture by almost 450 fold which helped to

avoid model over-fitting and a lack of vascular detail in the output image. Further-

more, they proposed a bridge-style architecture based on their Mi-UNet which in-

corporated a saliency mechanism dubbed Salient U-Net (S-UNet). The significantly

reduced number of learnable parameters allowed for real-time segmentation. More-

over, experimental results of the S-UNet show superior performance on the DRIVE

and STARE databases with the added benefit of being able to use whole images as

input without pre-processing steps.

Luo et al. (2019) presented a technique which incorporated a densely connected

network and an attention mechanism into the original U-Net architecture to segment

human bulbar conjunctival micro-vessels. Image pre-processing included CLAHE

for vessel map enhancement. A patch-extraction procedure was incorporated in-

stead of using whole images as input in an attempt to increase the training size of

the datasets used. The dense connection had the effect of significantly reducing the

number of parameters in the model which suppressed over-fitting on small datasets.

Their Attention-Dense-UNet (AD-UNet) was also tested on retinal fundus images

showing strong performance on the DRIVE and STARE datasets.
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Fan et al. (2019) presented a method based on U-Net with a similar encoder-

decoder type architecture for vessel segmentation in retinal images. Octave con-

volutions were utilised in an attempt to learn hierarchical multi-frequency features

through feature encoder blocks. With the intuition of decoding these feature maps

back to an image, an octave transpose convolution was proposed which takes as

input these multi-frequency feature vectors to output restored images with spatial

details. Similar to the U-Net, skip connections are adopted to feed location infor-

mation from the encoder to the decoder. Being able to utilise full-image extractions

rather than a patch-based approach allowed fast computation. State-of-the-art per-

formance was shown on DRIVE, STARE, CHASE_DB1, and HRF databases.

Jin et al. (2019) proposed a method based off U-Net which exploits local features

in retinal vessels. Their Deformable U-Net (DUNet) integrated deformable convo-

lutional layers (Dai et al., 2017) in the common U-Net architecture in an attempt

to ensure accurate localisation of segmented regions. Receptive fields are adap-

tive according to vessel shape and structure in this model allowing an increase in

performance. State-of-the-art performance in terms of global accuracy was seen on

the DRIVE, STARE and CHASE_DB1 databases. Trained on these public databases,

the models were then tested on other datasets proving superior generalisation over

other methods.

Yan, Yang, and Cheng (2019) proposed a three-stage learning procedure for seg-

menting blood vessels in retinal images in order to separate the process of segment-

ing vessels of different diameters. The stages, which included thick vessel segmen-

tation, thin segmentation and vessel fusion, allowed the negative influence of the

highly imbalanced vessel sizes to be minimised substantially. Thick vessels account

for nearly 80% of the vessel map, thus separating the process was thought to de-

crease the overlooking of the thin vessels. In order to train the models differently in

each stage, the ground truth images needed a skeletonisation pre-processing method

to distinguish thick from thin vessels. The segmentation fusion stage refined the

results to remove incorrectly labelled vessel pixels. Fully convolutional networks

were used in each stage. State-of-the-art results were seen on the DRIVE, STARE,

and CHASE_DB1 databases.
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Li et al. (2019) presented what is, at the time of writing this, the state-of-the-art

architecture for retinal vessel segmentation. Their method aimed at replicating the

step-wise procedure of an expert annotator. Expert annotators first roughly segment

the vessel map and then correct and refine this initial segmentation through refin-

ery steps. This iterative procedure is replicated in the Iternet. A base model does

the initial segmentation and then smaller refinery models update this initial seg-

mentation. The base model utilised in their paper was the standard U-Net with the

refinery models being smaller versions of the U-Net. It was shown how output after

each refinery model improved in connectivity of vessels. Furthermore, they intro-

duced a metric which could be highly beneficial in problems of vessel segmentation

known as connectivity. The base model was able to accurately segment superior

vessel structures with the refinery models segmenting those inferior vessels. It was

shown that models were able to be trained on minimal dataset sizes without the need

for patch extraction. The model is interesting and simple in its replication of human

procedures leading to its significant increase in performance over other methods. It

may be beneficial to examine how adding attention to the base model could increase

its performance.

Guo et al. (2020) incorporated a method which did not require the availability of

numerous training samples. Their Spatial-Attention U-Net (SA-UNet) made use of

a spatial-attention mechanism to map attention along the spatial dimension of the

original U-Net. Furthermore, they made use of dropout to ensure model generali-

sation. This method performs better than the Iternet described above on the DRIVE

and CHASE_DB1 databases in terms of sensitivity. This further suggests how atten-

tion could be added to current methods to improve performance.

Existing CNN architectures have not taken into account the graphical structure

of the vessel shape, but have rather relied on the local appearances learned on the

usual image grid. Efficient use of the relationship that exists between vessel neigh-

bourhoods may improve the accuracy of vessel segmentation problems. Shin et al.

(2019) incorporated a graph neural network into a CNN architecture in order to ex-

ploit global vessel structures as well as local appearances. The architecture is ex-

tremely useful since it is easily applied to add to any type of CNN-based vessel

segmentation method to significantly enhance the performance.
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Table 2.1 summarises the reviewed literature. It is evident that the U-Net has

formed a backbone for segmentation tasks in medical image analysis, with no ex-

ception in vessel segmentation problems. Most models have built on this with the

current state-of-the-art being an iterative version of this architecture. There have

been attempts to incorporate attention into these segmentation models proving to

increase model performance without incurring too large a computational overhead.

It may thus be necessary to explore the U-Net, Iternet, and these models with incor-

porated attention gates in order to understand and improve current performances.
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Section Authors Region Imaging Modality Method

1 Afifi et al. (2015) Brain MRI Region growing
Ahlem and Layachi (2015) Breast Mammogram Region growing
Ronneberger, Fischer, and Brox (2015) Neuronal EM U-Net
Çiçek et al. (2016) Kidney CT 3DU-Net
Milletari, Navab, and Ahmadi (2016) Prostate MRI V-Net
Zhou et al. (2018a) Chest, liver, colon CT Nested U-Net
Xie et al. (2016) Muscle H&E slides Spatial CW-RNN
Stollenga et al. (2015) Brain MRI 3D LSTM
Andermatt, Pezold, and Cattin (2016) Brain MRI RNN
Chen et al. (2016) Neuronal EM recordings U-Net with RNN
Poudel, Lamata, and Montana (2016) Heart MRI RCFN
Oktay et al. (2018) Pancreas CT Attention U-Net

2.1 Hassouna et al. (2006) Brain MRA EM &MRF
Xu et al. (2010) Brain MRI GMMs
Bruyninckx et al. (2010) Liver CT Ant colony optimisation
Oliveira, Feitosa, and Correia (2011) Liver CT GMM
Descombes et al. (2012) Brain Micro CT Watershed algorithm
Goceri, Shah, and Gurcan (2016) Liver MRI K-means clustering
Shalaby et al. (2018) Brain MRA GMMs
Ghazal, Al Khalil, and El-Baz (2018) Brain MRA MRF
Gur et al. (2019) Brain Microscopy Field of active contours
Fan et al. (2020) Brain MRA HMRF

2.2 Nekovei and Ying Sun (1995) Liver Cineangiography MLP
Zeng et al. (2016) Liver MRI ELM
Charbonnier et al. (2016) Thoracic CT CNN
Smistad and Lovstakken (2016) Heart Ultrasound CNN
Tetteh et al. (2018) Brain Angiography FCN
Livne et al. (2019) Brain CT U-Net

3.1 Bhuiyan et al. (2007) Retinal Fundus Fuzzy C-means clustering
Al-Rawi and Karajeh (2007) Retinal Fundus Genetic algorithms
Lam and Yan (2008) Retinal Fundus Laplacian operators
Kande, Subbaiah, and Savithri (2010) Retinal Fundus Fuzzy C-means clustering
Vlachos and Dermatas (2010) Retinal Fundus Multi-scale line-tracking
Lupaşcu and Tegolo (2011) Retinal Fundus SOM
Yu et al. (2012) Retinal Fundus Guassian filtering
Oliveira, Ren, and Cavalcanti (2012a) Retinal Fundus Fuzzy C-means clustering
Asad, Azar, and Hassanien (2014) Retinal Fundus Ant colony optimisation
Zhang et al. (2015) Retinal Fundus SOM
Roychowdhury, Koozekanani, and Parhi (2015) Retinal Fundus GMM
Strisciuglio et al. (2015) Retinal Fundus B-COSFIRE
Mapayi, Tapamo, and Viriri (2015) Retinal Fundus Fuzzy C-means
Sreejini and Govindan (2015) Retinal Fundus Multi-scale matched filtering
Annunziata et al. (2016) Retinal Fundus Neighbourhood estimating filter
Lahiri et al. (2016) Retinal Fundus Auto-encoder
Zhang et al. (2016) Retinal Fundus Filter-based
Lupascu and Tegolo (2016) Retinal Fundus Clustering SOM
Neto] et al. (2017) Retinal Fundus Filters and curvature analysis
Nowińska, Yavuz, and Köse (2017) Retinal Fundus K-& fuzzy C-means clustering
Tavakoli et al. (2017) Retinal Fundus Radon transforms
Santhosh Krishna, Gnanasekaran, and Aswini (2018) Retinal Fundus CLAHE, Gaussian kernels
Lahiri et al. (2018) Retinal Fundus GAN
Dash and Bhoi (2018) Retinal Fundus Ostu thresholding
Chalakkal and Abdulla (2018) Retinal Fundus Curvelet transform
Bilal Khomri (2018) Retinal Fundus EMOABC
Ali, Wan Zaki, and Hussain (2018) Retinal Fundus K-means clustering
Abbas et al. (2019) Retinal Fundus GAN
Memari et al. (2019) Retinal Fundus Spatial fuzzy C-means clustering
Liu, Gu, and Lu (2019) Retinal Fundus Ensemble of multiple methods
Shah et al. (2019) Retinal Fundus Gabor wavelet
Li, Comer, and Zerubia (2020) Retinal Fundus MPP model
Yang et al. (2020) Retinal Fundus SUD-GAN
Liu et al. (2020) Retinal OCT angiography Variation auto-encoders
Rocha et al. (2020) Retinal Fundus Gabor wavelets
Wang et al. (2020) Retinal DSA DANN

3.2 Staal et al. (2004b) Retinal Fundus KNN
Soares et al. (2006) Retinal Fundus Bayesian classifier
Rodrigues et al. (2013) Retinal OCT SVM
Fu et al. (2016) Retinal Fundus CNN
GeethaRamani and Balasubramanian (2016) Retinal Fundus Tree-based
Aslani and Sarnel (2016) Retinal Fundus Random forest
Li et al. (2016) Retinal Fundus CNN
Orlando, Prokofyeva, and Blaschko (2017) Retinal Fundus FCCRF
Tetteh et al. (2017) Retinal Fundus FCN
Zhu et al. (2017) Retinal Fundus ELM
Xiao et al. (2018) Retinal Fundus Weighted Res-UNet
Jiang et al. (2018a) Retinal Fundus Transfer learning
Liu et al. (2018) Retinal Fundus CNN
Alom et al. (2018) Retinal Fundus R2U-Net
Zhuang (2018) Retinal Fundus LadderNet
Yan, Yang, and Cheng (2018) Retinal Fundus Novel loss function
Hu et al. (2019) Retinal Fundus S-UNet
Luo et al. (2019) Retinal Fundus U-Net variant
Fan et al. (2019) Retinal Fundus U-Net variant
Jin et al. (2019) Retinal Fundus DUNet
Yan, Yang, and Cheng (2019) Retinal Fundus FCN
Li et al. (2019) Retinal Fundus Iternet
Shin et al. (2019) Retinal Fundus GNN

TABLE 2.1: Summarising the reviewed literature of vessel segmenta-
tion. MRI: Magnetic Resonance Imaging, EM: Electron Microscopy,
CT: Computed Tomography, H&E: Hematoxylin and Eosin, MRA:
Magnetic Resonance Angiography, OCT: Optical Coherence Tomog-

raphy, DSA: Digital Subtraction Angiography
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Chapter 3

Methodology

The task of segmentation of tubular structures such as vessels is shied from the faint-

hearted due to its sheer difficulty. This chapter deals with the theoretical considera-

tions used to deal with the task of vessel segmentation.

3.1 A brief discussion of the pre-requisites

This project focuses on the use of deep learning in supervised vessel segmentation

problems. As seen in Chapter 2, these deep learning models fall under the category

of fully-convolutional networks (FCN). FCNs are particular kinds of CNNs where

every layer consists of convolutional layers. Any paper must be fully contained

within itself. In an attempt to set up notation as well as allow the reader to have all

pre-requisite knowledge available, Appendix A introduces neural networks, con-

volution, and convolutional neural networks. Furthermore, elementary topics of

backpropagation, activation and loss functions, data augmentation and regularisa-

tion are presented in great detail. For those more advanced readers, the fundamental

ideas which are specifically crucial to this problem are briefly presented.

3.1.1 Loss functions

1Semantic segmentation is a pixel-wise classification problem. With those of seg-

menting a single region from the background, the problem becomes that of binary

classification with a pixel being either the region of interest or the background. Ves-

sel segmentation problems are usually binary pixel-wise classification tasks. Other

scenarios include segmenting pathological vessels and normal vessels or inferior

1The mathematical notation used follows from Jadon (2020)
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and superior vessels. In these cases, the problem is no longer binary as there are

more than two classes. Classification problems require loss functions different to

those used in regression. Loss functions are based on statistical distributions of de-

sired outputs such that Binary Cross Entropy is formed on the basis of the Bernoulli

distribution with Categorical Cross Entropy on the Multinoulli distribution (Jadon,

2020). For the task of semantic segmentation, Jadon (2020) outlines numerous loss

functions which have proven extremely effective in recent years. Here, those com-

mon and interesting (according to myself) are presented.

One of the most popular loss functions used in scenarios such as these is that of

Binary Cross Entropy (BCE). Ma Yi-de, Liu Qing, and Qian Zhi-bai (2004) defined

this as a difference measure between two distributions, which is given mathemati-

cally as:

CBCE(y, ŷ) = −∑
i
(yilog(ŷi) + (1− yi)log(1− (ŷi))), (3.1)

where y is the true response and ŷ is the predicted response from a model. Variants

of this include the Weighted Binary Cross Entropy:

CW−BCE(y, ŷ) = −∑
i
(βyi log(ŷi) + (1− yi) log(1− (ŷi))), (3.2)

where the β is a tuning parameters which trades-off between false negatives and

false positives. β > 1 will decrease false negatives while β < 1 will decrease false

positives. And Balanced Cross Entropy:

CBalCE(y, ŷ) = −∑
i
(βyi log(ŷ) + (1− β)(1− yi) log(1− (ŷi))), (3.3)

where β = 1− y
Height×Width .

Developed by Lin et al. (2017), Focal Loss is also a variation of BCE. The aim of

this loss was to steer the learning process to focus on training examples which are

deemed harder to classify. Their goal was to address the issue of large data imbal-

ance between regions of interest and background. This may prove highly beneficial

in tasks of vessel segmentation where large vessels are easily segmented, with thin-

ner vessels being completely overlooked. The large majority of vessel images are
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also background thus the problem is highly imbalanced. To define the focal loss, we

must rewrite BCE as a piece-wise function:

CBCE(p, y) =

 − log(p) if y = 1

− log(1− p) otherwise
, (3.4)

where p ∈ [0, 1] is the models output probability for the class labelled y = 1 and

y ∈ {±1} is the ground truth. Thus we can write:

pt =

 p if y = 1

1− p otherwise
, (3.5)

such that CBCE(p, y) = CBCE (pt) = − log (pt). Now, we can define the focal loss:

CFL (pt) = − (1− pt)
γ log (pt) , (3.6)

for some “tunable” focusing parameter γ ≥ 0. Notice how the focal loss is the BCE

loss multiplied by (1− pt)
γ, known as the “modulating factor”. Lin et al. (2017)

described two important aspects of focal loss:

1. Misclassified examples with small pt values, will cause the modulating factor

to be close to 1, not affecting the loss. Where as pt approaches 1, this modulat-

ing factor approaches 0, effectively down-weighting the loss for well classified

examples.

2. The ‘focusing parameter’, γ, has the ability to adapt the rate at which simpler

examples are down-weighted in a smooth manner. This parameter controls

the modulating factors effect, where γ = 0 reduces the loss to BCE .

Lin et al. (2017) found a γ value of 2 to be superior in their experiments. In

practice, it may be beneficial to use a weighted focal loss:

CFL (pt) = −αt (1− pt)
γ log (pt) , (3.7)

for some tuning parameter α > 0.

Another popular method used in semantic segmentation is known as Dice Loss.

The Dice coefficient is used in computer vision problems to determine the equiva-

lence between images (Jadon, 2020). Sudre et al. (2017) adapted this metric in order
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to be incorporated into a loss function defined as:

CDL(y, p̂) = 1− 2yp̂ + 1
y + p̂ + 1

. (3.8)

Finally, a combination of different losses may also be used. An example of this

technique is a novel loss function known as Combo Loss:

CCL(y, ŷ) = αCBalCE − (1− α)CDL(y, ŷ). (3.9)

3.1.2 Data augmentation

A.2.4 explains, in more detail, the benefits of data-augmentation in the bias-variance

trade-off. Wang et al. (2019a) claimed that “data augmentation is more important

than model architectures for retinal vessel segmentation.” Their experiments showed

how simple U-Net models may outperform state-of-the-art complex architectures

through effective augmentation regimes. A major finding was the extreme effect

that image patch sampling at numerous orientation angles would have on the gen-

eralisation error.

Common data augmentation operations include shifts, rotation and scaling im-

ages. With segmentation algorithms, it is essential that if these transformations are

undertaken on the inputs, they must be done on the outputs as the gold standard

segmentation will change with shift and rotation of the input image. The injection of

noise into training images has also proven to increase the performance of vessel seg-

mentation (Shorten and Khoshgoftaar, 2019). When comparing varying learning al-

gorithms or deep learning architectures, it is thus essential to take into account data

augmentation. Often this isn’t the case as state-of-the-art results shown in papers

may be achieved through thorough data pre-processing and augmentation rather

than the carefully curated models. To accurately compare models, controlled exper-

iments must be performed.

3.2 An introduction to fully-convolutional networks

Compared to image classification and object detection tasks, semantic segmentation

is widely considered as much more difficult (Tsang, 2018). Semantic segmentation
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aims to label each and every pixel of an image rather than giving a single label to

an entire image. In classification problems, images are downsized into feature maps

through convolutional and pooling layers described in Appendix A.2.2 and A.2.3,

respectively. These feature maps are then usually fed through fully-connected lay-

ers or other classification algorithms such as support vector machines or random

forest classifiers, in an attempt to provide a single label for the entire input image.

Cireşan et al. (2012) proposed training a CNN through a sliding-window organisa-

tion in an attempt to classify each pixel’s class label with patches around that pixel as

input. Although significantly outperforming every other contestant at the ISBI 2012

EM Segmentation challenge, the technique suffered some major drawbacks. Firstly,

requiring the model to run individually for each patch results in ample computa-

tional time and redundancy due to patch overlapping. Furthermore, there exists a

“trade-off between localisation accuracy and the use of context” (Ronneberger, Fis-

cher, and Brox, 2015). More elegant approaches exist by replacing fully-connected

layers in the CNN by 1× 1 convolutions, to result in a fully-convolutional network

(FCN).

Originally introduced to semantic segmentation by Long, Shelhamer, and Dar-

rell (2014), FCNs have become the trusted architecture for the task of spatially dense

prediction. Slight modification to CNNs allow FCNs to appropriately segment im-

ages in a pixel-wise manner. Upsampling from the downsampled feature maps allows

FCNs to output images of the same size as the input giving pixel-wise classification,

which is the basis for semantic segmentation. Replacing the fully-connected layers

with convolutional layers steers the aim of image classification to image context, i.e.

where regions of interest are located in the image. Image recognition networks, such

as that defined by Krizhevsky, Sutskever, and Hinton (2012) and its successors (Si-

monyan and Zisserman, 2014; Szegedy et al., 2014) produce output without spatial

information, due to this being concealed in the fully-connected layer with fixed input

dimension. These fully-connected layers can be seen as convolutional layers, with a

kernel the size of the entire input region (Long, Shelhamer, and Darrell, 2014) which

will allow input of varying size to output classification maps. This technique has

proven both absolutely and asymptotically efficient (Figure 3.1) (Long, Shelhamer,

and Darrell, 2014).
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FIGURE 3.1: From CNNs to FCNs: Replacing the fully connected lay-
ers in a CNN with convolutional layers. [Source: (Long, Shelhamer,

and Darrell, 2014)]

3.2.1 Transpose convolutional layer

Commonly (and mathematically mistakenly) referred to as “deconvolutional lay-

ers”, transpose convolutional or upsampling layers allow FCNs to produce dense

map predictions from downsampled images represented as feature maps. Upsam-

pling with some factor f is equivalent to convolution with fractional stride 1/ f .

Upsampling through transpose convolution is straight forward to implement as the

forward and backward passes in convolution are simply reversed.

As explained in Section A.2.3, pooling layers reduce the number of learnable pa-

rameters by representing activations in a receptive field by some summary statistic.

Although extremely efficient in classifcation tasks, spatial context is disorientated

during pooling. Proposed by Noh, Hong, and Han (2015), unpooling in transpose

convolutional layers reverses the process of pooling for image reconstruction (Fig-

ure 3.2).

Unpooling outputs sparse activations which the transpose convolution densifies.

Instead of connecting numerous activations in some receptive field to a sole activa-

tion, as done in convolutional layers, transpose convolutional layers associate a sole

activation to a window of multiple activations. The kernels which are learnt during

training in transpose convolutional layers have the effect of shape reconstruction

from feature maps. A hierarchical structure captures varying degrees of spatial de-

tail, with higher layers capturing class-specific features and lower layers extracting

general shape.
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FIGURE 3.2: A graphical representation of pooling, unpooling, con-
volution, and deconvolution in CNNs. [Source: (Noh, Hong, and

Han, 2015)]

3.3 Segmentation Architectures

In order to conduct a thorough analysis of vessel segmentation techniques, a number

of architectures which have shaped the direction of current research have been se-

lected. Firstly, due to its extreme breakthrough in segmentation tasks and its specific

targeting on medical applications, implementation and analysis of the U-Net was

deemed highly necessary. As described in Section 2, the U-Net has been the basis

of segmentation architectures since its creation with most state-of-the-art methods

consisting of a slight variation to this architecture.

A major research theme of this project was to determine whether the use of at-

tention could improve model performance. This was primarily due to the significant

effect that attention has had throughout deep learning applications. Its ease of in-

corporation into pre-existing models allows for controlled experimentation and a

proposed increase in performance requiring minimal effort. Thus, an incorporation

of attention into the standard U-Net architecture in an Attention U-Net was consid-

ered.

The current state-of-the-art vessel segmentation architecture in the Iternet. This

model not only surpasses its competitors in performance among all publicly avail-

able datasets, but its simplicity and intuition are easily seen. This architecture acts

in such a way which a human annotator would in stages of baseline segmentation



Chapter 3. Methodology 34

followed by refinery steps.

The baseline segmentation model used in the Iternet paper was the standard U-

Net architecture. This U-Net was developed in 2015, with new variations recently

surpassing its performance on different segmentation tasks. In an attempt to create

a novel architecture and stand on the shoulders of giants such as the Iternet, an itera-

tive architecture which incorporates attention, named the Attention Iternet is defined

in this project.

3.3.1 U-Net

Introduced by Ronneberger, Fischer, and Brox (2015), the U-Net was the first FCN

aimed at tackling the task of biomedical image segmentation. In the biomedical

domain, the number of images available to train computational models is minute.

U-Net aimed at accurately capturing context and localised information with few

training examples yielding explicit segmentations. Traditional CNNs have an ex-

tremely large amount of learnable parameters and therefore require large datasets.

Due to the size of the common datasets in medical image segmentation, models need

to optimise the amount of information which could be learned from a single image.

The Encoder-Decoder formation, utilised in networks like U-Net, replaces the fully-

connected layers with upward convolutions in the Decoder which significantly de-

creases the number of learnable parameters in an attempt to decrease capacity and

increase learning on unseen data.

Long, Shelhamer, and Darrell (2014)’s primary idea was to replace pooling with

upsampling operators to produce output with increased resolution. Ronneberger,

Fischer, and Brox (2015) modified this in a way where the upsampling section of the

network would, too, contain significant feature channels, allowing the propagation

of contextual details layers with higher resolution. This would result in a network in

which the contracting and expansive paths are symmetric, producing a u-shaped de-

sign (Figure 3.3), hence the name. Features from the encoder or contracting path are

concatenated with those from the decoder or expanding path through skip connec-

tions. These allow spatial information, which may have been disoriented through

multiple convolutions, to be passed on.
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FIGURE 3.3: The U-Net architecture. [Source: (Ronneberger, Fischer,
and Brox, 2015)]

Ronneberger, Fischer, and Brox (2015) detail the importance of data augmenta-

tion in biomedical segmentation tasks, especially through deformations. Deforma-

tions are common in biomedical tissue, and realistic deformations are proven to be

easily recreated.

The encoder path keeps to standard CNN architecture with repeated 3× 3 un-

padded convolutions followed by ReLU activations and 2× 2 max-pooling with a

stride of 2. The amount of feature channels is doubled in each downsampling step of

the contracting path. The decoder or expansive path consists of steps of upsampling

followed by a 2× 2 convolution, halving the feature channel number. The concate-

nation of this output and that from corresponding encoder step through the skip

connection, are processed through two 3× 3 convolutions followed by ReLU activa-

tions. A 1× 1 convolution is used at the end of the network to map feature channels

to the desired number of classes. A total of 23 convolutional layers are used in the

network described in the paper.

The model is trained with input images and corresponding GT segmentations

through stochastic gradient descent described in (Jia et al., 2014). Ronneberger, Fis-

cher, and Brox (2015) describe the importance of weight initialisation in order to mit-

igate the effect of some neurons having strong activations with others having close

to zero. They recommend initialising weights in such a way that each feature map

will have unit variance. Sampling weights from a Gaussian distribution will achieve
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this. A combined loss function with cross entropy loss and pixel-wise soft-max was

used during training.

The U-Net has proved highly successful in the domain of biomedical segmenta-

tion, making it the foundation on which other methods have been built. This project

aimed at exploring this architecture and its variants as well as novel variations.

3.3.2 Attention U-Net

Hore and Chatterjee (2019) define attention as “the cognitive process of selectively

concentrating on a few relevant things while ignoring others”. Initially created by

Bahdanau, Cho, and Bengio (2014) and arguably one of the most important ideas in

deep learning in recent years, attention mechanisms have changed the way we deal

with high-dimensional data in tasks of natural language processing and computer

vision.

Attention is a mechanism which works by weighting features by relative im-

portance to a problem and then using these weights to improve performance. This

is learned in the training process, and is categorised into hard- and soft-attention.

Hard-attention relies on the use of reinforcement learning and is non-differentiable

in most cases, e.g. iterative region proposal. On the other hand, soft-attention makes

use of back-propagation and is represented in a probabilistic sense.

FIGURE 3.4: Additive attention gate diagram. Feature maps (xl) from
outputs of previous convolutions are scaled through learned atten-
tion coefficients (α). The spatial area is determined through anal-
ysis of both the contextual information through the gating signal
(g), which is fetched from the skip connections, and the activations.

[Source: (Oktay et al., 2018)]
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2Attention coefficients, αi ∈ [0, 1], are used to maintain only those features rel-

evant in the task at hand. Convolutional layers in a networks output high dimen-

sional representations of images. Stacking these convolutional layers separates pix-

els in an image according to their semantics. We define xl as the feature maps ex-

tracted after convolution, which is then passed through an activation function (usu-

ally ReLU): σ1

(
xl

i,c

)
= max

(
0, xl

i,c

)
, where i and c are the spatial and channel di-

mensions of the feature map. Attention gates (AG) combine these feature maps with

attention coefficients through element-wise multiplication, such that: x̂l
i,c = xl

i,c · αl
i ,

allowing them to learn to focus on target regions. Attention values, are calculated

for every pixel vector cl
i ∈ RFl , with the dimension, Fl , being the feature map count

in layer l. For this project, there is only one semantic class thus single-dimensional

attention coefficients are learned. Oktay et al. (2018) described how “each attention

gate learns to focus on a subset of target structures”. The gating vectors gi ∈ RFg

carries contextual information used to determine regions of interest and prune fea-

ture responses in lower-levels (shown in Figure 3.4). Additive attention is used in

this project and can be defined as:

ql
att = ψT

(
σ1

(
WT

x xl
i + WT

g gi + bg

))
+ bψ, (3.10)

where σ1

(
xl

i,c

)
= max

(
0, xl

i,c

)
, is the ReLU activation function. The coefficients are

calculated as:

αl
i = σ2

(
ql

att

(
xl

i , gi; Θatt

))
, (3.11)

where σ2 (xi,c) =
1

1+exp(−xi,c)
is the sigmoid activation function which is used over the

softmax function due to the issue of the softmax producing more sparse activations

at output layers. The set of parameters Θatt which is made up of channel-wise 1x1x1

convolutions as linear transformations Wx ∈ RFl×Fint , Wg ∈ RFg×Fint ψ ∈ RFint×1 and

bias terms bψ ∈ R, bg ∈ RFint , defines the AG. These parameters are trained using

the standard back-propagation described in Section A.1.4.

AGs may be utilised in standard CNN architectures without requiring much

computational overhead while improving sensitivity and accuracy (Schlemper et al.,

2018). Oktay et al. (2018) incorporated these AGs in the standard U-Net architecture

2The notation and description is largely taken from Oktay et al. (2018)
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FIGURE 3.5: Attention U-Net. Images are downsampled by a factor
of 2 similarly to the contracting part of the standard U-Net. Atten-
tion gates are used to filter features arriving at the expanding part
through the skip connections. The segmentation output is defined by
the number of semantic classes, Nc. The details of the attention gates

are shown in Figure 3.4. [Source: (Oktay et al., 2018)]

for segmentation of the pancreas in CT abdominal datasets (Figure 3.5). Salient fea-

tures are highlighted in the skip connections, where irrelevant information is gated

in the AGs. The gating functions are incorporated directly before the concatenation

through the skip connections, whereby merging only those activations which are

deemed relevant. Gradients arising from regions of background are weighted less

during the backward pass of back-propagation, allowing those parameters in the

shallow layers of the network to be mostly updated based on spatially relevant re-

gions. Furthermore, the addition of AGs enables models to learn to focus on regions

of interest which may vary in shapes and sizes. This is clearly important in tasks of

vessel segmentation. The update rule for the network parameters in layer l − 1 is

given by:

∂
(
x̂l

i
)

∂ (Φl−1)
=

∂
(

αl
i f
(

xl−1
i ; Φl−1

))
∂ (Φl−1)

= αl
i

∂
(

f
(

xl−1
i ; Φl−1

))
∂ (Φl−1)

+
∂
(
αl

i
)

∂ (Φl−1)
xl

i , (3.12)

with f
(
xl ; Φl) = x(l+1) being the convolution function in layer l characterised by

the kernel weights Φ.

Bahdanau, Cho, and Bengio (2014) proposed the use of a vector containing con-

text in an attempt to ”align and target” inputs. This would maintain information

from hidden states in RNN encoder paths to align them with current output targets.

This enabled the model to “attend to” particularly relevant inputs allowing complex

relationships between input and targets to be better learned. Their method proved
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highly accurate on neural machine translation tasks while agreeing with human in-

tuition.

Xu et al. (2015) were the first to propose a framework which utilises visual at-

tention. Their method attempted to align images with words. As such, stacked

convolutional layers were used as feature extractors with RNNs to align these fea-

tures through the use of attention (Figure 3.6). Captions generated are “aligned” to

specific parts of the image, highlighting relevant information such as objects or areas.

FIGURE 3.6: Using attention gates in image captioning tasks. [Source:
(Xu et al., 2015)]

Oktay et al. (2018) then proposed the use of attention gates for medical image

segmentation which would learn to attend to relevant structures in images without

supervision.

3.3.3 Iternet

Li et al. (2019) designed Iternet for vessel segmentation which kept the process of

the human expert in mind through an iterative process, hence the name. Vessel map

annotators split the segmentation process into different stages: first drawing a rough

segmentation map, and then refining this through intuition and knowledge that ves-

sels are connected. The Iternet uses segmented vessel maps from a base model as

input to refining models which learn to make the segmentation better or correct mis-

takes automatically. These models can be any segmentation models; however, Li et

al. (2019) made use of U-Net as the base model and a miniature version of the U-Net

(mini-UNet) as the refinery model. Their choice was based on the strong perfor-

mance which U-Net has shown on multiple medical image segmentation tasks.
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FIGURE 3.7: The Iternet architecture. [Source: (Li et al., 2019)]

U-Net outputs a segmentation map represented by probabilities of pixels being

regions of interests. This is represented in a single channel. The mini-UNets, which

are the refinery models, use as input the second to last layer of the preceding model.

These refinery models are stacked in order to obtain better results through each ad-

dition. The use of the 32-channel input rather than the last layer of the preced-

ing network (1-channel), allows more information to be carried to the next refinery

stage. Using lightweight mini-UNets as opposed to regular U-Nets proved to im-

prove performance significantly, probably due to over-fitting. The iterative process

of the refinery models was proven to connect mistakenly split vessels over time.

Skip-connections were introduced in the Iternet, similar to those used in the U-

Net. The idea was that the refinery models should be able to see what the original

(raw) image looks like in order to make accurate refinements (much like an expert

annotator would). Furthermore, this aimed at avoiding the issue of vanishing gradi-

ents which is present in many deep learning models. Three types of skip-connections

are present in this architecture. An intra-module connection is the usual one used in

U-Nets which connects encoding or contracting paths to the decoding or expanding

paths. The next connects the base U-Net to the refinery models. This allows the re-

finery models to see information very similar to that of the input image. Here, the

feature from the first layer of the base U-Net is concatenated with each feature from

the first layer of the refinery modules. Finally, there exists a connection amount the

refinery modules. The features from the lower modules are concatenated with the

upper ones. This architecture is the current state-of-the-art across all mainstream

retinal vessel segmentation datasets and is shown in Figure 3.7.
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3.3.4 Attention Iternet

Here we propose a novel segmentation technique which utilises attention in the Iter-

net. The base module of the Iternet described above is replaced with the Attention

U-Net. The Iternet is a highly adaptable model with the authors creating an iterative

structure of already proposed models rather than a completely new architecture. We

expect this adaption to the base module to provide the refinery modules with a bet-

ter starting point on which to build. We hypothesise that these refinery modules

will then be able to focus more on the inferior vessels and the connectivity that most

other techniques will miss, with minimal computational overhead.

3.4 Performance Measures

We use several performance measures to analyse the methods used in this study

quantitatively. In tasks of semantic segmentation, accuracy alone is not sufficient

in presenting the advantages and drawbacks of specific methods. This is especially

true when the data is highly imbalanced, i.e. most (c. 85%) of the input image repre-

sents background. In these cases, a model which classifies every pixel as background

will obtain a highly accurate prediction, however, would prove completely useless.

We evaluate semantic segmentation tasks on a pixel-wise classification basis. In

order to thoroughly compare and evaluate the different methods explored in this

research, metrics such as accuracy (AC), sensitivity (SE), specificity (SP), Dice coef-

ficient (DC), and Jaccard similarity (JS) are used. With tasks of segmenting a single

class from the background in an image, the pixel-wise classification is binary, i.e.

each pixel is either the region of interest (vessel) or background (not vessel). Thus,

in order to calculate these performance metrics, we must first calculate the values;

True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN).

3.4.1 Accuracy

Although misleading at times, accuracy is by far the most common reported metric

in semantic segmentation tasks, including those of blood vessel segmentation. In

fact, state-of-the-art is measured on accuracy alone. This reports on the proportion

of pixels which are correctly classified by the model as vessel or non-vessel. There
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have been two similar methods of calculating accuracy in retinal blood vessel seg-

mentation tasks. The first of which would only take into account those pixels inside

the field of view. Those outside the field of view would not be counted no matter

how the model classified them. The second includes all the pixels in the image. The

first method is not commonly used any more due to some popular datasets not pro-

viding the field of view, depriving the ability of fair comparisons on these datasets.

This research will consider the second method. The accuracy is calculated as:

AC =
TP + TN

TP + TN + FP + FN
. (3.13)

3.4.2 Sensitivity and Specificity

Sensitivity can be described as the true positive rate with specificity known as the true

negative rate. These are commonly used in tasks of binary classification tasks as they

rely directly on the computation of TP, TN, FP, and FN. Sensitivity reports on an

algorithms ability to segment vessel structures where specificity reports the ability

of an algorithm to circumvent noise in images. Sensitivity is calculated as:

SE =
TP

TP + FN
, (3.14)

and specificity as:

SP =
TN

TN + FP
. (3.15)

Both SE, SP ∈ [0, 1] with 1 being the best a model can achieve.

3.4.3 Dice Coefficient and Jaccard Similarity

Also known as the Intersection-Over-Union (IoU), the Jaccard similarity index has

been used throughout the literature in semantic segmentation tasks. The metric is

simple to implement and highly effective. As seen in Figure 3.8, the Jaccard similar-

ity is “the area of overlap between the predicted segmentation and the ground truth

divided by the area of union between the predicted segmentation and the ground

truth” (Tiu, 2019) and calculated as:

JS =
|GT ∩ SR|
|GT ∪ SR| , (3.16)
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where GT refers to the ground truch and SR refers to the segmentation result from

the model.

FIGURE 3.8: A graphical representation of the IoU metric. [Source:
(Tiu, 2019)]

Also known as the F1-score, the Dice coefficient is the “harmonic mean of the

precision and recall” (Sateesh, 2018). The Dice coefficient is positively correlated to

the Jaccard similarity in the sense that if the if given two models, A and B, if the

Jaccard index says model A is better than model B, then so will the Dice coefficient.

Both DC, JS ∈ [0, 1], with 1 representing a perfect score. The Dice coefficient is

calculated as:

DC = 2
|GT ∩ SR|
|GT|+ |SR| . (3.17)
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Chapter 4

Data and Implementation Details

4.1 Retinal blood vessel databases

The availability of data is what has truly driven deep learning in recent years. Pub-

licly available databases allow researchers to develop methods in a competitive man-

ner, constantly creating new state-of-the-art methods and pushing the boundaries

further. ImageNet (Deng et al., 2009) has arguably played one of the most influential

roles in the development and exposure of the power of deep learning. According

to The Economist (2016) when Krizhevsky, Sutskever, and Hinton (2012) won Ima-

geNet with AlexNet, “suddenly people started to pay attention, not just within the

AI community but across the technology industry as a whole.” These publicly avail-

able databases allow for controlled comparison and benchmarks on which to build

novel architectures.

The study of blood vessel segmentation has largely focused on that of retinal

images due to the availability of databases. These retinal blood vessel databases

consist of fundus photography which involves capturing the rear of the eye, known

as the fundus. Specialised cameras are used to capture these images which include

a microscope and an attached flash. The main structures which are present in these

images are the macula, optic disc as well as the central and peripheral retina. An im-

portant feature of these databases for deep learning segmentation purposes, is the

availability of the ground truth of the vessel structures. These are the expertly anno-

tated vessel maps. There a currently nine different publicly available retinal blood

vessel databases, four of which include ground truth annotations. Those which in-

clude the ground truth are: DRIVE (Staal et al., 2004c), STARE (Goldbaum, 1975),
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CHASE_DB1 (Owen et al., 2009), HRF (Köhler et al., 2013). The following subsec-

tions describe the datasets in more detail with Table 4.1.

Databases Number of images Resolution
DRIVE 40 768× 584
STARE 400 (20 with GT) 605× 700

CHASE_DB1 28 1280× 960
HRF 45 3504× 2336

TABLE 4.1: Description of retinal databases.

4.1.1 DRIVE

The aim of the DRIVE (Digital Retinal Images for Vessel Extraction) database was

to allow for comparative studies of blood vessel segmentation techniques in reti-

nal images. Consisting of 40 colour fundus images, the DRIVE database is one of

the largest and most commonly used retinal blood vessel segmentation databases.

These images were randomly chosen from a larger dataset consisting of 400 sub-

jects between 25-90 years of age. Of the 40 available images, 7 present signs of early

diabetic retinopathy while the remaining 33 show no signs. The images are JPEG

compressed and obtained using 8-bit colour planes with size 768× 584. A field of

view is provided for each image which is approximately 540 pixels in diameter.

The database has been split into training and testing sets, both consisting of 20

images each. The training images are accompanied with a single manually anno-

tated segmentation of the vessel map, while the test images are accompanied with

two. One of these is considered the gold standard while the other is that from an

independent human observer.

4.1.2 STARE

Derived from the STARE (Structured Analysis of the Retina) project, the STARE

database is commonly used along with DRIVE in most retinal segmentation papers.

The database consists of 400 fundus images of which 20 are accompanied by their

ground truth vessel segmentation map from two separate expert annotators. The

images were obtained using 8-bit colour planes with size 605× 700.
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Of those 20 images which are accompanied by their ground truth, 11 present

signs of some form of retinal disease while the remaining are considered healthy.

This may be viewed as not being representative of the population and may cause

difficulties in generalisation of the models built on this database.

4.1.3 CHASE_DB1

The CHASE_DB1 database is a fundus image database which is part of a larger

project known as CHASE (Child Heart and Health Study in England). This sub-

set database consists of fundus images taken from both eyes of 14 children subjects

which leads to a total of 28 images. The images of resolution 1280× 960 were ob-

tained using a 35-degree field-of-view on a handheld NM-200-D fundus camera.

Each image is accompanied by two expertly annotated ground truth segmentations.

There is no information on the health records of each retinal image, however the

images present decent quality with good lighting and contrast.

4.1.4 HRF

The HRF (High Resolution Fundus) database was created to support the study of

automatic blood vessel segmentation techniques in retinal images. Obtain through

the us of a Canon CR-1 fundus camera with a field of view of 45-degrees, the images

consist of the highest resolution among all the dataset with a size of 3504× 2336. The

dataset consists of a total of 45 retinal images consisting of equal splits of healthy,

diabetic retinopathy, and glaucomatous patients. Each raw fundus image is accom-

panied by a ground truth vessel map which was obtained from a group of experts.

4.2 Pre-processing

Pre-processing steps have consistently played a role in vessel segmentation pro-

cedures. Raw fundus images exhibit unbalanced illumination, poor contrast and

blurred vessels. Vessel enhancement approaches enable the improvement of vessel

map perception. Furthermore, it may be impractical for CNNs to process fundus

images in their entirety due to their size. A number of different pre-processing tech-

niques exist which aim to add contrast between vessel and background as well as get

images into suitable sizes to work with deep learning models. Moccia et al. (2018a)
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details numerous techniques, however this project will focus on those common and

efficient in experimentation.

4.2.1 Patch Extraction

Training CNN model from scratch usually requires a large number of images. Many

medical imaging datasets, including retinal blood vessel databases, consist of very

few images which are simply not enough to train complex models. Data-augmentation

(described in Section A.2.4) could be used to help models generalise on unseen data,

however a common approach to “increase” the dataset size as well as allowing com-

putational efficiency is to utilise patch-extraction.

Inspired by the works done by Alom et al. (2018), a random patch-extraction

process has been utilised in this project. Patches of resolution 48× 48 pixels were

randomly extracted from each image and its corresponding ground truth. It was

guaranteed that the patches would consist of relevant information (in the field-of-

view) through discarding those patches outside the field-of-view. Patches which

consisted of purely black tiles were skipped and the random extraction was then

repeated until a desired number of patches were extracted for each image. Algo-

rithm 1 describes the process in more detail. Figure 4.1 shows a batch of the patches

extracted from the raw images and their corresponding ground truth patches.

Random patch extraction was useful in training the models as any predeter-

mined number of patches could be extracted from each image with overlapping

patches. However, for visualisation purposes of a built model. It may be neces-

sary to extract non-overlapping patches in a grid-like formation. In this way, we are

able to reconstruct the full retinal image by storing the spatial index of each patch.

4.2.2 Grey-scale Conversion

Retinal images usually have low contrast between the vessel and the background

making it difficult for automatic segmentation algorithms to accurately extract ves-

sel maps. The green channel of these images however, present high contrast with

darker regions representing vessels on a lighter background. This allows the ves-

sel structure to be easily seen with a naked eye. Figure 4.2 shows a comparison of

the different channels of the retinal image. It is easily seen that the green channel

provides the modes contrast between the vessel structure and the background. This
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Algorithm 1: Random Patch Extraction

Input: Train images X ∈ RN×C×H×W , ground truths G ∈ RN×1×H×W

Input: Patch size p
Input: Number of patches per image Np

Output: Patch train images I ∈ R(N×Np)×C×p×p, ground truths
T ∈ R(N×Np)×1×p×p

iter-tot = 0
for i← 0 to N do

k = 0
while k < Np do

Randomly generate centre coordinates of the patch
Patches I and labels T are extracted from X and G centred on (x, y),
respectively

if Not inside FOV then
continue

else
Save patch
iter− tot+ = 1
k+ = 1

(A) Input images. (B) Ground truth labels.

FIGURE 4.1: An example of patches extracted from the DRIVE
dataset.
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FIGURE 4.2: Comparison of the contrast between red, green and blue
channels of a colour retinal fundus image. From left to right: The orig-
inal colour retinal fundus image. The red channel of the image. The
green channel of the image. The blue channel of the image.[Source

Szpak and Tapamo (2008)]

is an extremely efficient form of pre-processing and requires the absolute minimum

computation. Many techniques (discussed in Section 2) have utilised grey-scale con-

version of the retinal image into its green channel only, providing exceptional re-

sults when doing so. For this project, I have adopted the technique of using the

green-channel of the raw image as it is simple and effective.

4.2.3 Contrast-limited adaptive histogram equalisation

Image enhancement methods commonly include histogram equalisation due to its

simplicity and lack of computational requirements. Contrast-limited adaptive his-

togram equalisation (CLAHE) is a form of histogram equalisation which is com-

monly used to enhance either colour or green-channel only retinal images. An im-

age histogram is a statistical representation of intensity values. Manipulating this

histogram allows enhancement of images. The objecting of histogram manipulation

in this context is to obtain a uniform distribution of the intensity.

Adaptive histogram equalisation is used in an attempt to improve the contrast

in images. This is different from normal histogram equalisation in the sense that

multiple histograms are computed, with each corresponding to different regions of

the image. These histograms are then used to redistribute intensity values of the im-

age. Adaptive histogram equalisation, however, has the tendency to over-amplify

noise in near-constant sections, which is commonly present in medical images. The

variant of this, CLAHE, limits this contrast amplification so as to reduce the issue of

noise amplification.



Chapter 4. Data and Implementation Details 50

FIGURE 4.3: Histogram redistribution as seen in CLAHE.

The contrast amplification for each pixel in CLAHE is computed from the slope

of the transformation function which is proportional to the slope of cumulative dis-

tribution function (CDF) of the neighbourhood. This is therefore proportional to

the histogram value at that pixel. Amplification limits are defined by clipping the

histogram at specific values before the CDF is computed. This in turn limits to the

transformation function (Pizer et al., 1987). This clipping limit is usually chosen to

be between 3 and 4 times the mean value of the histogram. Th clipped part is not

discarded but rather redistributed as shown in Figure 4.3.

CLAHE was implemented using the OpenCV library (Bradski, 2000). Figure 4.4

shows the effect of CLAHE on vessel enhancement. It is easily seen how the vessel

structure is visually amplified with smaller vessel which weren’t previously visible

in the green channel image (Figure 4.4b), coming to light in the image after CLAHE

is applied (Figure 4.4c).

(A) Raw image. (B) Green channel. (C) CLAHE of the green channel.

FIGURE 4.4: Showing the effect of CLAHE on green channel retinal
images of the DRIVE dataset.
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FIGURE 4.5: Overview of the proposed framework. [Source: (Jiang
et al., 2019)]

4.2.4 Framework

Due to the random patch extraction process, the amount of data given to the models

to train on remained constant throughout the different datasets used. Data of the

varying retinal datasets were split into training, validation and testing sets. Utilis-

ing a validation set rather than cross-validation was deemed sufficient due the size

of the resulting dataset after pre-processing. All models were trained on the pre-

processed datasets as described above with the further use of data augmentation.

Data augmentation included rotation, as well as horizontal and vertical flipping of

the patch input images. In an attempt to improve robustness of the models, noise

was injected into the training images. Figure 4.5 describes the proposed framework

used in this study.
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Chapter 5

Results and Discussion

5.1 Experiment 1: Retinal data sets

1The training process of the proposed methods has been conducted using Google

Colaboratory (Colab) (Bisong, 2019). Colab is a Google Research hosted Jupyter

Notebook product which allows researchers to execute python code with free access

to Nvidia K80, T4, P4 and P100 GPUs. Models were built using the PyTorch (Paszke

et al., 2019) library with image processing helped through the use of OpenCV (Bradski,

2000) and Pillow (Clark, 2015) libraries.

5.1.1 DRIVE

Initial analysis was done on the DRIVE dataset. Analysis began with the most com-

mon type of medical segmentation architectures, the U-Net, following the formula-

tion described in Section 3.3.1 presented by Ronneberger, Fischer, and Brox (2015).

This was used as a benchmark to which the other methods are compared. This im-

plementation aimed to gain a thorough understanding of the effect which the hyper-

parameters in the model as well as pre-processing would have on its performance.

The baseline model was trained on full, unprocessed, colour images which were

cropped to 256× 256 pixels. The model was trained for 150 epochs which was only

feasible due to the small size of the dataset. The model included data augmentation

during training.

Figure 5.1 shows the segmentation results of this method. Although the supe-

rior vessel branches are segmented correctly from the background and the general

structure is present, the result is far from clinically acceptable as most of the inferior

1All code is open-sourced and available on https://github.com/DeVriesMatt/
Deep-Vessel-Segmentation

https://github.com/DeVriesMatt/Deep-Vessel-Segmentation
https://github.com/DeVriesMatt/Deep-Vessel-Segmentation
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vessels are not segmented at all and instead are completely ignored. Section 3.4 dis-

cusses how accuracy may be a very misleading metric in this scenario and is clearly

shown to be the case when referring to the results in Table 5.2. We see accuracy and

specificity greater than those reported by Jin et al., 2019. These results are directly

attributed to the fact that if an algorithm, in the case of a highly imbalanced dataset

such as this, classifies every pixel as background, then these metrics will be high.

Furthermore, specificity is described as the “true negative rate”, thus classifying ev-

ery pixel as background will give a specificity of 1. The Dice coefficient and the

sensitivity are alternative and more meaningful metrics to consider here, showing

this baseline model’s inferiority.

FIGURE 5.1: Segmentation result of the baseline model. The first row
shows the expertly annotated ground truth. The second row shows

the result from the baseline U-Net model.

Next, the U-Net was then trained on patches of size 48× 48 without any further

pre-processing. The model was trained for 50 epochs using SGD with Adam opti-

misation at an initial learning rate of 0.002 with a learning rate schedule where the

learning rate decreases by a factor of 10 every 10 epochs. This hyperparameter was

chosen through thorough trial and error. The number of epochs chosen seemed suf-

ficient due to convergence of the validation accuracy as well as the limited resources

available. As per Kingma and Ba (2014), β1, the exponential decay rate for the first
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moment estimates was chosen to be 0.9 with β2, the exponential decay rate for the

second-moment estimates set at 0.999. Initially, the model did not include dropout

and the output was evaluated using a BCE loss function.

In an attempt to increase the performance further, all pre-processing techniques

described in Chapter 4.2 were used. That is, 50 000 patch of size 48× 48 were ex-

tracted from the raw images. These images were passed through CLAHE with only

the green channel used. This single-channel image was then normalised and sub-

ject to transformations such as horizontal and vertical flipping as well as rotation.

Multiple different loss functions were tested thoroughly on each dataset, including

all those described in A.1.3. Utilising the Combo Loss with α = 0.33 proved most

beneficial in this scenario.

Figure 5.2 shows the training and validation accuracies on losses of the different

models. We see that although the models may still be learning from the training data,

it is not beneficial to continue training further as the validation accuracy has stopped

increasing, in fact, the models begins over-fitting after about 25 epochs which is

shown by and increase in the validation loss. These plots show superior perfor-

mance of the models which incorporate attention on the training data. When con-

sidering the validation data, an attention-incorporated U-Net clearly outperforms

the standard U-Net in terms of patch accuracy. With regards to the iterative mod-

els, the attention-incorporated Iternet model and the standard Iternet model seem

to perform very similarly. Table 5.1 shows just how similar the results are on the

training dataset, however we do see that the iterative models slightly outperform

the base models with the Attention Iternet outperforming the rest in most metrics

except for the Jaccard similarity.

When analysing the test results in Table 5.2 we see that the models outperform

those reported in terms of accuracy. The bold text represents the highest score for

that metric across the board, whilst the red coloured text represents the highest score

for that metric of those models tested in this study. We see that the Attention Iternet

outperforms the other models in terms of sensitivity, specificity, Dice coefficient, and

Jaccard similarity. The Iternet is superior, however, in accuracy.
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Figure 5.3 shows the segmentation results from the different models. It is clear

that the models perform extremely similar, with slight differences only seen on very

close inspection. It is evident that the iterative models output a more connected ves-

sel map, with those models which incorporate attention able to segment the finer

vessels.

Table 5.3 shows the time taken to train the different models on a dataset of 50 000

patches of size 48× 48 using the Nvidia Tesla P100 GPU provided by Google Colab

Pro. It is clear that adding attention gates to the models increases computational

time. This time is almost doubled for the U-Net, whereas for the Iternet model,

adding attention to the base model only increases the training time by roughly 15%.

FIGURE 5.2: Training and validation accuracies and losses on the
DRIVE dataset of U-Net, Attention U-Net, Iternet and Attention Iter-

net
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Dataset Method Year Acc SE SP DC JC
DRIVE U-Net 2020 0.991890 0.932161 0.997930 0.954688 0.913328

Att. U-Net 2020 0.993851 0.955710 0.997690 0.966063 0.934385
Iternet 2020 0.995570 0.962162 0.998285 0.975571 0.952560

Att. Iternet 2020 0.995580 0.968794 0.998958 0.975694 0.952329

TABLE 5.1: Results on the training set of the DRIVE dataset.

Dataset Method Year Acc SE SP DC JC
DRIVE U-Net Reported 2018 0.9555 0.7822 0.9808 0.8174

U-Net Baseline 2020 0.9567 0.4405 0.9934 0.5716
U-Net Final 2020 0.957435 0.724005 0.980274 0.750485 0.600678
Att. U-Net 2020 0.959394 0.727828 0.982068 0.760281 0.613386

Iternet Reported 2018 0.9573 0.7735 0.9838 0.8205
Iternet 2020 0.960288 0.731314 0.980032 0.761219 0.614543

Att. Iternet 2020 0.959426 0.758845 0.981762 0.771606 0.628204

TABLE 5.2: Results on the test set of the DRIVE dataset.

Model Time (s)
U-Net 4131

Attention U-Net 7169
Iternet 9133

Attention Iternet 10473

TABLE 5.3: Time taken to train the models for 50 epochs using Nvidia
Tesla-P100 GPU.
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FIGURE 5.3: Result on the test images of the DRIVE dataset. The first
row shows the raw images. The second row shows the expertly an-
notated ground truth. The third, forth, fifth and sixth rows show the
result from the U-Net, Attention U-Net, Iternet and Attention Iternet

models respectively.
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5.1.2 STARE

Experiments were then conducted on the STARE dataset. Here, the only difference in

model configuration was the choice of the loss function. The same patch extraction

process was followed. It was seen that using a BCE loss function achieved superior

performance in this scenario. All models perform well and extremely similar on the

images presented with slight differences only seen after close inspection. The train-

ing and validation accuracies are shown in Figure 5.4 where it is clearly seen that the

Iternet and U-Net seem to perform better on the training data than when these mod-

els incorporate attention. The Iternet is seen to perform best on the validation data

here too; however, the U-Net is outperformed by those models including attention.

Figure 5.5 shows a comparison between the different models tested.

An interesting result is seen when we take a closer look into the differences in

the output of the models, as shown in Figure 5.6. Here, it is clear (even though the

segmentation results may be substandard due to the large variation of vessel sizes

in the image) that those models which include attention are able to segment more

of the inferior vessels. The problem, however is that these inferior vessels are too

pronounced in the segmented output covering more pixels than necessary (miss-

classifying background as vessel in pixels neighbouring the vessel). This may cancel

out the increased accuracy metric of actually detecting these inferior vessels. This

further suggests how the accuracy metric may be substandard in the situation of

vessel segmentation. In fact, when we analyse the results in Table 5.4, it may be sug-

gested that most of these metrics may be misleading except for sensitivity in cases

where there are blood vessels of varying shapes and sizes. This may suggest that

sensitivity is the most important metric when analysing blood vessel segmentation

methods as it may be argued that overstating the thickness of the segmented vessel

may be more beneficial than not finding the vessel at all. We see how the sensitiv-

ity increases when we add attention to the models. Furthermore, it is evident that

the addition of the refinery modules in the iterative models increases performance

through connecting vessel structures.
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Dataset Method Year Acc SE SP DC JC
STARE U-Net Reported 2018 0.9752 0.7840 0.9880 0.7993

U-Net Re-Implementation 2020 0.955327 0.731733 0.981365 0.792193 0.659906
Att. U-Net 2020 0.952018 0.762952 0.976774 0.781385 0.646088

Iternet Reported 2019 0.9782 0.7715 0.9919 0.8146
Iternet Re-implementation 2020 0.957177 0.759659 0.987322 0.794565 0.662337

Att. Iternet 2020 0.955917 0.767518 0.981658 0.794308 0.663228

TABLE 5.4: Results on the test set of the STARE database.

FIGURE 5.4: Training and validation accuracies and losses on the
STARE dataset of U-Net, Attention U-Net, Iternet and Attention Iter-

net
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FIGURE 5.5: Result on the unseen images of the STARE dataset. The
first row shows the raw images. The second row shows the expertly
annotated ground truth. The third, forth, fifth and sixth rows show
the result from the U-Net, Attention U-Net, Iternet and Attention Iter-

net models respectively.
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FIGURE 5.6: A closer look at the effect of using attention gates in
the Iternet model on an image in the STARE database. The first row
shows the ground truth. The second shows the segmentation result
of the Iternet and the third shows the segmentation result of the At-

tention Iternet.
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5.1.3 CHASE_DB1

The models were then trained and tested on the CHASE_DB1 database. A total of

2500 patches were randomly extracted (using algorithm 1) from each image, allow-

ing the models to be trained, validated and tested on 50 000, 10 000, 10 000 patches

respectively of size 48× 48 pixels. There was negligent difference in performance

between loss functions on this dataset, thus BCE was used in the final models due

to simplicity. As seen on the STARE dataset, the iterative models outperform the

others in terms of training and validation accuracy (Figure 5.7). Validation accuracy

increases when incorporating attention into the U-Net model; however, this is not

the case for the Iternet model. Tables 5.5 and 5.10 show how, again, those models

without attention are superior in terms of accuracy, specificity, Dice coefficient, and

Jaccard similarity. However, the models which incorporate attention are superior in

sensitivity. Figure 5.8 shows a close comparison of the output of the different mod-

els. Again, when looking closely at those thinner vessels, it is seen that those models

with attention are able to segment the smaller vessels better than those without. One

downfall of those models which incorporate attention is the presence of noise in the

segmentation result. This could be a major cause for the slightly inferior metrics of

these models.

Although slight differences in the performance, the models produced very sim-

ilar results on most images. Figures 5.9 and 5.10 show the segmentation outputs

on the training and test sets respectively. This dataset consists of higher resolution

images than the previous two, which, when utilising the same size image patches,

seems to cause additional noise in the segmentation results. It may be beneficial to

explore different sized image patches on these larger resolution images.

Dataset Method Year Acc SE SP DC JC
CHASE_DB1 U-Net Reported 2018 0.9752 0.7822 0.9808 0.7993

U-Net Re-implementation 2020 0.980562 0.818712 0.993557 0.861442 0.756986
Att. U-Net 2020 0.980388 0.819101 0.993392 0.860149 0.755065

Iternet Reported 2019 0.9760 0.7969 0.9881 0.8072
Iternet Re-Implementation 2020 0.981934 0.840149 0.993389 0.872992 0.774888

Att. Iternet 2020 0.981170 0.844432 0.992180 0.868466 0.767938

TABLE 5.5: Results on the training set of the CHASE_DB1 database.
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FIGURE 5.7: Training and validation accuracies and losses on the
CHASE dataset of U-Net, Attention U-Net, Iternet and Attention Iter-

net

Dataset Method Year Acc SE SP DC JC
CHASE_DB1 U-Net Reported 2018 0.9752 0.7822 0.9808 0.7993

U-Net Re-Implementation 2020 0.967826 0.690193 0.987264 0.735615 0.583260
Att. U-Net 2020 0.966475 0.675250 0.986885 0.723770 0.568205

Iternet Reported 2019 0.9760 0.7969 0.9881 0.8072
Iternet Re-implementation 2020 0.968264 0.641106 0.985443 0.747580 0.597994

Att. Iternet 2020 0.966130 0.722915 0.988878 0.710534 0.552640

TABLE 5.6: Results on the test set of the CHASE_DB1 database.
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(A) Ground truth. (B) U-Net.

(C) Attention U-Net. (D) Iternet.

(E) Attention Iternet.

FIGURE 5.8: Comparison of the different models on an image in the
STARE database. 5.8a shows the ground truth. 5.8b, 5.8c, 5.8d, 5.8e
show the results from the U-Net, Attention U-Net, Iternet and Atten-

tion Iternet respectively.
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FIGURE 5.9: Comparison of the different models on the training set
of the CHASE database. The first column shows the ground truth.
The second, third, forth and fifth columns show the results from the

U-Net, Attention U-Net, Iternet and Attention Iternet respectively.
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FIGURE 5.10: Comparison of the different models on the test set of
the CHASE database. The first column shows the ground truth. The
second, third, forth and fifth columns show the results from the U-

Net, Attention U-Net, Iternet and Attention Iternet respectively.
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5.1.4 HRF

This dataset is of the highest resolution amongst all those examined. For the pur-

pose of consistency, 70 000 patches of size 48× 48 were extracted from the images.

50 000 were used for training with 10 000 for validation and the remaining 10 000 for

testing. Here, surprising results were seen with the the training and validation ac-

curacies in Figure 5.11 and the other metrics in Tables 5.7 and 5.8. Firstly, it was seen

that the iterative models were outperformed by the base models. Secondly, adding

attention gates to the U-Net model would improve its accuracy on both the training

and validation sets; however, this was not the case with the Iternet. We do, however,

continue to see the trend where incorporating attention into the models will increase

the sensitivity. Furthermore, when incorporating attention into the U-Net model, we

notice an increase in all the reported metrics, differing from what was seen on the

other datasets. This was not seen to be the case for the Iternet model, as adding at-

tention gates to this model only proved to increase the sensitivity, Dice coefficient,

and Jaccard similarity, with a decrease in accuracy and specificity.

Although apparent, these differences are negligent as seen by Figures 5.12 and

5.13, with slight differences only seen upon extremely close inspection. One of the

more prevailing issues in this dataset as opposed to the previous ones, is the pres-

ence of noise in the segmentation results.

In order to gain a slightly broader understanding of the models and in an attempt

to conduct further analysis, the models were then trained on patches of size 128×

128. Tables 5.7 and 5.8 show the increase in performance on both the training and

testing when using these larger patches. Furthermore, it is evident from Figures 5.14

and 5.15 that the issue of noise is significantly reduced.

Dataset Method Year Acc SE SP DC JC
HRF 48 U-Net 2020 0.985494 0.905055 0.991276 0.903312 0.824274

Att. U-Net 2020 0.986608 0.913055 0.993124 0.909377 0.834350
Iternet 2020 0.985285 0.885548 0.993231 0.898778 0.816847

Att. Iternet 2020 0.985173 0.897938 0.992138 0.900002 0.818783
HRF 128 U-Net 2020 0.990042 0.920963 0.997730 0.933619 0.875805

Att. U-Net 2020 0.991874 0.929672 0.994876 0.944927 0.895755
Iternet 2020 0.987921 0.888720 0.996060 0.917391 0.847761

Att. Iternet 2020 0.988846 0.899929 0.996115 0.923970 0.859039

TABLE 5.7: Results on the training set of the HRF database using dif-
ferent patch extraction processes.
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Dataset Method Year Acc SE SP DC JC
HRF 48 U-Net 2020 0.957509 0.695670 0.979289 0.714657 0.557389

Att. U-Net 2020 0.959255 0.684086 0.982153 0.719738 0.563431
Iternet 2020 0.960547 0.693395 0.982808 0.728765 0.574571

Att. Iternet 2020 0.957711 0.686919 0.980201 0.712808 0.555226
HRF 128 U-Net 2020 0.965725 0.726590 0.985912 0.766519 0.622853

Att. U-Net 2020 0.966051 0.748756 0.984328 0.773324 0.631837
Iternet 2020 0.964026 0.718325 0.984792 0.755938 0.608879

Att. Iternet 2020 0.963378 0.728772 0.983151 0.755028 0.607995

TABLE 5.8: Results on the test set of the HRF database.

FIGURE 5.11: Training and validation accuracies and losses on the
HRF dataset of U-Net, Attention U-Net, Iternet and Attention Iternet
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FIGURE 5.12: Comparison of the different models on an image in the
training set of the HRF database when using patches of size 48× 48.
The first column shows the ground truth. The second, third, forth
and fifth columns show the results from the U-Net, Attention U-Net,

Iternet and Attention Iternet respectively.
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FIGURE 5.13: Comparison of the different models on an image in the
test set of the HRF database using patches of size 48× 48. The first
column shows the ground truth. The second, third, forth and fifth
columns show the results from the U-Net, Attention U-Net, Iternet

and Attention Iternet respectively.
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FIGURE 5.14: Comparison of the different models on an image in the
training set of the HRF database when using patches of size 128× 128.
The first column shows the ground truth. The second, third, forth
and fifth columns show the results from the U-Net, Attention U-Net,

Iternet and Attention Iternet respectively.
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FIGURE 5.15: Comparison of the different models on an image in
the test set of the HRF database using patches of size 128× 128 for
training. The first column shows the ground truth. The second, third,
forth and fifth columns show the results from the U-Net, Attention

U-Net, Iternet and Attention Iternet respectively.
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Chapter 6

Summary and Conclusion

The segmentation of blood vessels from medical images is a critical issue in numer-

ous clinical fields with research continuing throughout the 21st century and new

state-of-the-art occurring year-on-year. These state-of-the-art techniques have re-

cently been a variant of the groundbreaking U-Net model and have mostly been

analysed on retinal images due to the availability of these databases. The current

state-of-the-art is the Iternet model, which utilises an iterative process, mimicking

that of a human expert.

The invention of AG has had a significant impact on deep learning technologies

in tasks of NLP and computer vision with a particular interest in semantic segmen-

tation (Zhang et al., 2020; Tao, Sapra, and Catanzaro, 2020). These are proposed

to increase model performance without significant increase in computational over-

head. Furthermore, the addition of AG enables models to learn to focus on regions

of interest which may vary in shapes and sizes, which could be extremely beneficial

in the scenario of vessel segmentation.

This project attempted to explore vessel segmentation techniques and loss func-

tion as well as improving on the current state-of-the-art. To this end, thorough exper-

imentation was conducted on the U-Net and Iternet models as well as these models

with incorporated attention gates to focus on salient features. A primary discovery

was seen in the effect that pre-processing steps would have on the results of these

models. Utilising CLAHE on raw image inputs, only taking the green channel and

adopting a patch-extraction procedure proved to significantly increase baseline re-

sults.
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In most of the retinal datasets, the iterative models outperformed those base

models. Adding attention to the U-Net and Iternet models would then prove to

increase performance in terms of sensitivity. It was also seen that while the models

without attention gates might have produced some better performance metrics, that

these may be misleading as the methods with attention gates over-exaggerate infe-

rior vessels while those methods without attention would not segment these vessels

at all. Interesting results were then seen on the higher resolution database where

the base models outperformed the iterative models with attention making improve-

ments on the U-Net but not the Iternet model. Furthermore, high levels of noise

were presented in the segmentation results of the higher resolution dataset. Adopt-

ing a higher resolution patch-extraction procedure proved to mitigate the effect of

noise.

Furthermore, we attempted to transfer the knowledge learned from these databases

and apply the models on other tubular structure datasets. This task consisted of the

segmentation of vessels from chloroplast in Bienertia chlorenchyma cells (data taken

from Mai et al. (2019) and shown in Figure 6.1). Poor results were seen and the model

was not able to segment any meaningful information. This may be due to the highly

different vessel structures, shapes and sizes. Future work to improve these results

could focus on training models on more similar datasets. The lack of ground truth

for the chloroplast dataset makes it hard to train models on this, however, semi-

supervised learning techniques could be explored using few manually segmented

images as a baseline ground truth. Work will be continued on this with attempts

to publish a review, current results as well as a transfer learning approach to vessel

segmentation.

Ultimately, the task of vessel segmentation proved to be difficult with the need

for a number of pre-processing steps. Attention was shown to increase model per-

formance in most cases however the computational increase varied for the different

models with this being much more significant for the U-Net model than the Iternet

model. Attempts to transfer the knowledge learned on retinal datasets to chloro-

plast dataset failed, however, there may be prospects for future work on this topic

and transferring knowledge to other similar datasets.
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FIGURE 6.1: Electron tomography analyses of chloroplast in Bienertia
chlorenchyma cells. [Source: (Mai et al., 2019)]

Deep learning is often criticised for their “black-box-ness” (Kratzert et al., 2018).

This criticism is justified as the question of how and why a particular model works

or not is very important. Looking within the model and behind the scenes is what

makes science exciting. For this reason, it is suggested that further research could

be done looking at how the models determine vessel from background. A proposed

benefit of the incorporation of attention mechanisms into common architectures is its

explainability. Analysing the attention coefficients could explain more about what

the models are learning. Future work on deep learning-based vessel segmentation

techniques could include an Iternet where the refinery modules also include atten-

tion. Furthermore, including the raw input images to the input of the refinery mod-

ules in the Iternet may be an intuitive approach which could lead to better results.

Incorporating a patch-extraction procedure directly into models could be investi-

gated as this is easily seen to improve performance drastically. A focus on a model

which could be extended to multiple datasets and imaging communities would be

groundbreaking and should be a topic of major interest in years to come.
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Appendix A

Pre-requisites

A.1 A brief introduction to neural networks

Inspired by the biological neural networks of the brain, artificial neural networks

(ANNs) are one of the most powerful tools in the field of artificial intelligence. A

neural network is a system of interconnected neurons which send signals to one

another (Tchircoff, 2017). The strengths of these connections between the neurons,

also known as weights, determine the network’s behaviour. More importantly, these

weights can be systematically tuned to make the neural network behave in a highly

specific, desirable way. The ANN occurs in organised layers, some of which are

termed hidden layers. The number of hidden layers is controlled by the researcher

and subject to the complexity required. The complexity of the model increases as

the number of hidden nodes (neurons) increases. Cybenko (1989) proved that an

ANN consisting of a finite-sized single hidden layer is able “to approximate any

continuous function to any desired precision”. Although several authors have given

certain empirical equations to approximately estimate the number of neurons in the

hidden layer (Tamura and Tateishi, 1997; Molga, 2003; Pendharkar and Rodger, 2003;

Hunter et al., 2012), it is preferred to adopt trial and error approach for deciding the

optimal number of neurons in the hidden layer.

A.1.1 Structure and notation

1Consider modelling a dataset consisting observations of p inputs xT
i = [xi1, xi2, . . . , xip]

and q outputs yT
i = [yi1, yi2, . . . , yiq] for i = 1, 2, . . . , N (a total of N training exam-

ples). Let al
j denote the jth node on the lth layer of a standard feed-forward neural

network. The network structure can then be written as an updating equation:

1Largely taken from (Pienaar, 2018)
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al
j = σl

( dl−1

∑
k=1

al−1
k wl

kj + bl
j
)

l = 1, . . . , J; j = 1, . . . , dl , J − 1. (A.1)

Where:

• σl(.) denotes an activation function on layer l. Addressed in Section A.1.2.

• dl−1 denotes the number of nodes in layer l − 1.

• wl
kj denotes the kjth weight parameter linking the kth node in layer l − 1 and

jth node in layer l.

• bl
j denotes the jth bias in layer l.

• and the equation is evaluated subject to the initial conditions a(0)
j = xij for all

j at the ith training example.

A.1.2 Activation functions

Activation functions play an integral role in the neural network as they decide whether

the information from a specific node is important or not. These functions are what

ultimately differentiate neural networks from linear or logistic regression. A wide

range of activation functions exist, each with their respective advantages and draw-

backs, however, presented here are only those used in this research2.

Sigmoid function

The sigmoid is one of the most commonly used activation functions among all ap-

plications of deep learning applications. It is a nonlinear function denoted as the

following:

f (x) =
1

1 + e−x =
ex

ex + 1
for−∞ ≤ x ≤ ∞.

Other forms of the function include:

f (x) =
1

1 + e−αx and f (x) =
1

1 + e−g(x−b)
, (A.2)

2For a full overview with implementation, please see Gupta (2020) blog.
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FIGURE A.1: Activation Functions. [Source: Pienaar (2018)]

where α, g, and b are the learning rate, gain and bias respectively.

Figure A.1 above graphically represents the sigmoid activation function and its

derivative. One of the issues regarding the sigmoid functions is that the gradient

approaches zero as X becomes more extreme, which means at this point, the network

does not do much learning. The Range of the sigmoid function is between (0, 1),

which prevents activations from blowing up, but it returns all positive values. This

issue can be addressed with the hyperbolic tangent function (??).

Rectified linear units

Rectified linear units (ReLU) are a special kind of maxout (Goodfellow et al., 2013)

function, simply defined as the positive part of its argument:

f (x) = x+ = max(0, x). (A.3)

When looking at the gradient functions for each activation in Figure A.1, it is

seen that for sufficiently large inputs, there may be very little change in the value of

the activation function. The effects of this will become clear when one implements

backpropagation.

Soft-max function

The output layer of a neural network represents the final evaluation of the updating

equation, which defines the model. This layer is directly compared to the expected

output data via an appropriate cost function and thus is usually chosen in accor-

dance with the task at hand. For classification problems, such as pixel-wise semantic

segmentation, it is necessary to choose a function which matches the encoded output
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range. In an attempt to ensure the output acts as a distribution, a common approach

is to use the soft-max activation function on the output layer. This is defined as:

aL
j =

ezj

∑dL
k=1 ezk

, (A.4)

for j = 1, 2, . . . , dL. The outputs are therefore treated as probabilities with predictions

corresponding to that of the highest probability.

A.1.3 Loss functions

In the context of training machine learning models, the aim is to solve a configu-

ration which replicates the data in some sense. We wish to find model parameters

which give the most accurate approximation of the relationship between the input

and the desired response. Loss functions represent the difference between the out-

put of the model and the desired output. These can take on numerous forms and are

highly dependent on the nature of the task.

Loss functions are based on statistical distributions of desired outputs. For ex-

ample, Binary Cross Entropy is formed on the basis of the Bernoulli distribution

with Categorical Cross Entropy on the Multinoulli distribution (Jadon, 2020). For

the task of semantic segmentation, Jadon (2020) outlines numerous loss functions

which have proven extremely effective in recent years. Here, those familiar and ex-

citing (according to myself) are presented.

Semantic segmentation is evaluated in terms of pixel-wise classification with pix-

els belonging to either the region of interest of the background. Thus, the problem

is essentially that of binary classification. One of the most popular loss functions

used in scenarios such as these is that of Binary Cross Entropy. Ma Yi-de, Liu Qing,

and Qian Zhi-bai (2004) define Cross Entropy as a difference measure between two

distributions, given mathematically as:

CBCE(y, ŷ) = −∑
i
(yilog(ŷi) + (1− yi)log(1− (ŷi))) (A.5)
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Variants of this include the Weighted Binary Cross Entropy:

CW−BCE(y, ŷ) = −∑
i
(βyi log(ŷi) + (1− yi) log(1− (ŷi))), (A.6)

where the β coefficient is a tuning parameters which trades-off between false

negatives and false positives. β > 1 will decrease false negatives while β < 1 will

decrease false positives. And Balanced Cross Entropy:

CBalCE(y, ŷ) = −∑
i
(βyi log(ŷ) + (1− β)(1− yi) log(1− (ŷi))), (A.7)

where β = 1− y
Height×Width .

Developed by Lin et al. (2017), Focal Loss is also a variation of Binary Cross En-

tropy. The aim of this loss was to steer the learning process to focus on training

examples which are deemed harder to classify. Their goal was to address the is-

sue of large data imbalance between regions of interest and background. This may

prove highly beneficial in tasks of vessel segmentation where large vessels are easily

segmented, with thinner vessels being completely overlooked. The large majority of

vessel images are also background thus the problem is highly imbalanced. In order

define the focal loss, we must rewrite binary cross entropy as a piece-wise function:

CBCE(p, y) =

 − log(p) if y = 1

− log(1− p) otherwise
, (A.8)

where p ∈ [0, 1] is the models output probability for the class labelled y = 1 and

y ∈ {±1} is the ground truth. Thus we can write:

pt =

 p if y = 1

1− p otherwise
, (A.9)

such that CBCE(p, y) = CBCE (pt) = − log (pt). Now, we can define the focal loss:

CFL (pt) = − (1− pt)
γ log (pt) , (A.10)

for some tunable focusing parameter γ ≥ 0. Notice how the focal loss is the binary

cross entropy loss multiplied by (1− pt)
γ, known as the “modulating factor”. Lin

et al. (2017) described two important aspects of focal loss:
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1. Misclassified examples with small pt values, will cause the modulating factor

to be close to 1, unaffecting the loss. Where as pt approaches 1, this modulat-

ing factor approaches 0, effectively down-weighting the loss for well classified

examples.

2. The ‘focusing parameter’, γ, has the ability to adapt the rate at which simpler

examples are down-weighted in a smooth manner. This parameter controls the

modulating factors effect, where γ = 0 reduces the loss to binary cross entropy

.

Lin et al. (2017) found a γ value of 2 to be superior in their experiments. In practice,

it may be beneficial to use a weighted focal loss:

CFL (pt) = −αt (1− pt)
γ log (pt) , (A.11)

for some α.

Another popular method used in semantic segmentation is known as Dice Loss.

The Dice coefficient is used in computer vision problems to determine the equiva-

lence between images (Jadon, 2020). Sudre et al. (2017) adapted this metric in order

to be incorporated into a loss function defined as:

CDL(y, p̂) = 1− 2yp̂ + 1
y + p̂ + 1

. (A.12)

Finally, a combination of different losses may also be used. An example of this

technique is a novel loss function known as Combo Loss:

CCL(y, ŷ) = αCBalCE − (1− α)CDL(y, ŷ). (A.13)

A.1.4 Backpropagation

During the CNN training process, the kernels are updated during each epoch in an

attempt to minimise the given loss. The foundations of backpropagation were laid

in the 1960s (Kelley, 1960) in the context of control theory, yet only coined for its use

in machine learning two decades later (Rumelhart, Hinton, and Williams, 1986a).

This algorithm (as well as its variants) has proven efficient in gradient-based opti-

misation of weights in all types of neural networks. The algorithm requires both
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a continuous and differentiable loss function as its gradients are computed at each

iteration. Backpropagation is not the entire learning algorithm for deep networks,

but rather the commonly used method for gradient computation, which some other

algorithm uses in order to undertake learning.

Mitchell (1997) defines machine learning as: “A computer program is said to

learn from experience E with respect to task T and performance measure P, if its

performance at task T, as measured by P, improves with experience E”. This is the

adaption of weights in which the difference between the network and the desired

outputs are minimised (Snuverink, 2017). There are two phases through which the

backpropagation algorithm must pass, the forward pass and the backward pass:

1. Forward pass: Input (an image in this case) is passed through the network

which has been initialised with random weights giving some output.

2. Backward pass: Information flows back from the output and calculated cost

function in order to compute its gradient in terms of the weights.

The weights are then updated in the direction of the negative gradient through

some learning algorithm. Essentially, backpropagation is used to calculate the par-

tial derivative of the loss function with respect to the network weights, ∂L
∂w .

The following derives the backpropagation algorithm for a given cost function

C, the error el between the true output, yi, and the output from the network, ŷi. We

wish to evaluate the value of the loss function with respect to the weights, w, and

biases, w, working backwards from the loss through the network layers. We define

the loss:

C =
1

2N

N

∑
i
(ei)

2

el = yi − ŷi

,

(A.14)

and the linear component of a layer l:

zl
j =

dl−1

∑
k=1

al−1
k wl

kj + bl
j, (A.15)
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where al
j denotes the jth node on the lth layer of a neural network. The working

gradient is defined as:

δl
j =

∂C
∂zl

j
. (A.16)

We can now derive the general expressions for the required gradients, starting

with the terminal condition and propagating the errors backwards:

δL
j =

dL=q

∑
k=1

∂C
∂aL

k

∂aL
k

∂zL
j

=
∂C
∂aL

k

∂aL
k

∂zL
j

=
∂C
∂aL

j
σ′(zL

j ),

(A.17)

For some activation function σ(.). Iterating backwards from the terminal condi-

tion:

δl−1
j =

∂C
∂zl−1

j

=
dl

∑
k=1

∂C
∂zl

k

∂zl
k

zl−1
j

=
dl

∑
k=1

∂zl
k

zl−1
j

δl
k

=
dl

∑
k=1

(wl
jkσ′(zl−1

j ))δl
k

=
dl

∑
k=1

wl
jkδl

kσ′(zl−1
j ).

(A.18)

We can then evaluate the gradient of the cost function with respect to the model

parameters. For the biases of the model, we have:

∂C
∂bl

j
=

∂C
∂zl

k

∂zl
k

∂bl
j

= δl
j .

(A.19)

Next, for the weights:
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∂C
∂wl

kj
=

∂C
∂zl

j

∂zl
j

∂wl
kj

= al−1
k δl

j .

(A.20)

The updating equations for the back-propagation procedure are defined by Equation

A.19 and A.20 as well as the terminal condition in Equation A.17.

A.1.5 Optimisation

In order to train neural networks, some variant of Stochastic Gradient Decent (SGD)

is used. This algorithm updates weight parameters according to some rule in some

way as to minimise a cost function. SGD is an efficient approximation or online ver-

sion of Gradient Descent (GD) as instead of calculating the gradient through the use

of the entire dataset like in GD, SGD makes use of one or a batch of training exam-

ples in order to make an update. This is known as mini-batch SGD.

Mini-batch SGD updates the parameters after viewing and calculating the gradi-

ent of the cost function for a subset of n training samples. The update rule at iteration

i is defined by the previous weights θi−1, the gradient of the proposed cost function

∇θC(θ), and a learning rate η and given by:

θi = θi−1 − η∇θi C(θi) (A.21)

Deciding on an appropriate learning rate is a complex issue faced by all deep

learning researchers. Too high a learning rate could result in divergence from an op-

timum, where one too low would result in slow convergence. It is often the case to

choose a dynamic learning rate in accordance with the magnitude of the slope of the

cost function. Momentum is a method which aims at assisting in avoiding getting

stuck in a local optimum. A proportion, γ, of the update in the preceding iteration

is added to the update in the current iteration. The update rule with momentum is

defined as:
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vi = γvi−1 + η∇θi L(θi)

θi = θi−1 − vi

(A.22)

Introduced by Kingma and Ba (2014), the Adaptive Moment Estimation (Adam)

optimisation technique is one of the most popular in recent years due to the strong

performances achieved with its use and little memory requirement. Adam intro-

duces a new variable into the SGD with momentum algorithm which represents the

exponentially decaying average of past gradients. Adam combines advantages of

AdaGrad (Duchi, Hazan, and Singer, 2011) and RMSProp (Tieleman and Hinton,

2012) which work well with sparse gradients and in on-line settings respectively.

Bias-corrected estimates of the mean v̂t and variance m̂t of the gradient are used in

the update rule in this technique:

θt = θt1 −
η√

v̂t + ε
· m̂t. (A.23)

A.2 Convolutional Neural networks

Deep learning-based image segmentation and classification has exploded in recent

years following Krizhevsky, Sutskever, and Hinton (2012) winning ImageNet. Orig-

inally proposed by LeCun and Bengio (1998), Convolutional Neural Networks (CNNs)

have since dominated the field in both medical and commercial settings (Khan et al.,

2020). These models are designed in such a way where the data which is processed

has a grid-like topology, much like an image which can be seen as a 2D grid of pixels.

Any neural network which includes a special kind of linear mathematical operation

called a convolution is known as a CNN. "Convolutional neural networks are sim-

ply neural networks that use convolution in place of general matrix multiplication

in at least one of their layers" (Goodfellow, Bengio, and Courville, 2016).

The architecture of CNNs was inspired by the structure of the visual cortex in

a human brain where single neurons respond to stimuli in a restricted region only.

This region is known as the receptive field. Much like general feed-forward neu-

ral networks, CNNs consist of multiple layers of neurons; however, these layers are

somewhat different in CNNs. For the purpose of this study, it is important to un-

derstand and outline the motivations and operations used in the CNN architectures
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such as the convolution and transpose convolution operations, pooling layers and

fully-connected layers.

A.2.1 Convolution

The convolution operation can be defined as an operation on two functions of a

real-valued argument (Goodfellow, Bengio, and Courville, 2016). This definition is

motivated with an example.

Suppose we model a response function, x(t), of some input, t, such that x(t), t ∈

R. Now, it is justified to assume that instruments used to measure response may

be noisy; thus one may wish to obtain a less noisy prediction of the response to an

input. A common approach to this would be to take an average across multiple

measurements. However, for example, with time-series data, recent measurements

may be more relevant in predicting a response; thus it may be beneficial to apply a

weighted average operation with more weight given to recent responses. Defining

a weighting function w(a), where (in the example of time-series data) a is the age

of the response or the time since the response was measured. In order to obtain a

de-noised or smoothed estimate, s(t), of the response, a weighted average operation

can be applied at every instance. The convolution operation can be defined by:

s(t) =
∫

x(a)w(t− a)da, (A.24)

and is usually denoted with an asterisk such that:

s(t) = (x ∗ w)(t). (A.25)

In order for s(t) to be a weighted average, w must be a probability density func-

tion. However, in general, convolutions are defined for any function which A.24 is

defined. We term x(t) the input to the convolution and w(a) the kernel.

The use of the integral can be replaced with a summation in problems where t is

discrete. We can then define the discrete convolution operation as:

s(t) = (x ∗ w)(t) =
∞

∑
a=−∞

x(a)w(t− a). (A.26)
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In such applications, where imaging data is used as input, I, it is useful to a

two-dimensional kernel, K, during convolution:

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(m, n)K(i−m, j− n). (A.27)

An important property of convolution is that, when the kernel is flipped relative

to the input, it is commutative. We can then write:

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j− n)K(m, n), (A.28)

which is useful in implementation. Many implementations do however make

use of cross-correlation instead of convolution which can be written as:

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n), (A.29)

which is the same as convolution except the kernel is not flipped.

A.2.2 Convolutional layer

Imaging data are usually represented by tensors which contain colour information

in the form of red-green-blue (RGB) channels. Alternative image representations

exist, such as HSL (hue, saturation, lightness) and HSV (hue, saturation, value) or

HSB (hue, saturation, brightness). In these representations, the colours of each hue

are arranged in a radial slice, around a central axis of neutral colours which ranges

from black to white. Images are represented in the shape h× w× c, where c = 3 for

(RGB) colour images. The purpose of a convolutional layer in a CNN is to extract

high-level feature maps from images.

The kernels, K, used in convolutional layers are represented by their size Kx ×

Ky × c, where the receptive field on the image can be defined as Kx × Ky. The kernel

is convolved with the image in order to gain feature maps as output (Figure A.2).

The number of channels used in the kernel is always the same as those used in the

input to the convolution; thus, c changes throughout the architecture. The kernel

moves along the image from left to right with a particular stride until it has travelled

along the whole width of the image, where it then returns to the left and down with
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the same stride. This process is continued until the kernel has parsed over the entire

image or input. The stride parameter is defined in the construction of the network as

its value affects the output of the convolutional layer such that the row output size

is defined:

Ox =
Ix − Kx

s
+ 1, (A.30)

and the column output size is given by:

Oy =
Iy − Ky

s
+ 1. (A.31)

Several convolutions are usually performed in parallel to produce a set of linear

activation’s which are then processed through a non-linear activation function such

as the Rectified Linear Units (ReLU) activation function.

FIGURE A.2: Convolution in CNNs. [Source: (S. Mohamed, 2017)]

Convolution leverages significant properties which increase the performance of

deep learning machines: sparse interaction, parameter sharing, and equivariant rep-

resentations (Goodfellow, Bengio, and Courville, 2016). In traditional feed-forward

neural networks, layers utilise matrix multiplication with individual parameters for

each input and output unit. Convolutional layers, however, have sparse connectiv-

ity which may be achieved through the kernel size is smaller than that of the input.

This allows much fewer parameters to be stored in turn, improving statistical effi-

ciency while decreasing memory requirements as well as time complexity. Figure

A.3 presents a graphical representation of this concept.

Goodfellow, Bengio, and Courville (2016) defines parameter sharing as "using
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FIGURE A.3: Sparse connectivity, highlighting one output unit, s3,
and the input units in x that affect this unit. These units are known as
the receptive field of s3. (Top) When s is formed by convolution with
a kernel of width 3, only three inputs affect s3. (Bottom) When s is
formed by matrix multiplication, connectivity is no longer sparse, so
all the inputs affect s3. [Source: (Goodfellow, Bengio, and Courville,

2016)]

the same parameter for more than one function in a model". In computing the out-

put of traditional layers, each individual entry to the matrix of weights is utilised

only once and never reused. In convolutional layer, however, every element in the

kernel is utilised at each position of the input. This allows the machine to learn only

one set of parameters which further decreases the storage requirements of the ma-

chine.

The property possessed by convolution to be equivariant to translation follows

directly from this parameter sharing. A function is equivariant when a change to its

inputs causes an identical change to its outputs. Formally, a function f is equivariant

to another function g if f (g(x)) = g( f (x)), for some input x. Thus, the order of con-

volution and transformation on an input has no effect on the output produced. This

equivariance property is useful in extracting different features in different layers of

a CNN.
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A.2.3 Pooling layer

Also known as downsampling layers, pooling layers are usually between most par-

tially connected convolutional layers. Dissimilar to convolutional layers, pooling

layers do not contain learnable parameters. Their function is to instead replace the

output of a convolutional layer at a particular location with a summary statistic of

the nearby outputs. This is a form of dimension reduction where the information

outputted from the convolutional layer is compressed.

The most commonly used pooling operation in the literature, max-pooling (Zhou

and Chellappa, 1988), returns the maximum output within a pre-defined region (Fig-

ure A.4). Other favoured pooling operations include average pooling, weighted av-

erage pooling with weights determined by the distance from the centre pixel, and L2

norm pooling. The pooling operation acts independently on each channel or depth

of the input in order to spatially reshape it. Pooling has an important effect which

assists in allowing the output of the layer to be invariant to input translation. This is

a useful property if the problem of object presence in an image is more important to

localisation.

The use of pooling adds a significantly strong prior that the model learnt is in-

variant to small translations. If this prior assumption is valid, pooling can appre-

ciably ameliorate the statistical efficiency of a learning machine. This may pose a

problem in semantic segmentation where localisation is critical. Non-overlapping

pooling grids (where the size of the pooling filter is equal to the stride, i.e. 2x2 re-

gion with a stride of 2), however, an interesting observation made by Krizhevsky,

Sutskever, and Hinton (2012) showed that overlapping pooling with equivalent out-

put dimensions (e.g. a 33 window with a stride of 2) reduces over-fitting. Pooling

significantly reduces the number of learnable parameters in a model. For exam-

ple, a pooling window of size 2x2 with a stride of 2 discards 75% of the activations.

The depth dimension from the input, however, remains unchanged. This extreme

scrapping of information has caused the use of pooling to come under scrutiny

in recent years (Ruderman et al., 2018). Instead, techniques which utilise multiple
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convolutional layers before implementing any pooling layer (Simonyan and Zisser-

man, 2014), or completely disregarding pooling layers in the architecture have been

adopted (Springenberg et al., 2014). Instead, to reduce the dimensions of feature

maps outputted by convolutional layers, the use of larger strides in these layers may

be adopted. It is unclear whether the deep learning community will unanimously

decide on their use or misuse in future applications. It is worth noting that in the

training of generative models, such as Goodfellow et al.’s (2014) generative adver-

sarial network, it has been found paramount to discard pooling.

FIGURE A.4: A graphical representation of max-pooling. [Source: (Li,
2019)]

A.2.4 Data Augmentation

Although first introduced in 1988 (Lecun et al., 1998), CNNs took time to discover

their true potential due to inadequate computing hardware. However, with any

model fitting technique comes the threat of over-fitting. Over-fitting can be defined

as a modelling error which occurs when a function is too closely fit to a finite set of

data points. This will generally take the form of using an overly complex model in

order to explain idiosyncrasies in the data used to train the machine. A consequence

of over-fitting is the ability for a model to perform flawlessly on the training data

but fails to generalise on unseen data. A machine might over-fit if the training data

contains accidental or uncommon regularities and if an overly flexible machine is

used. Infinitely expressive machines have an infinity of factitious rules which they

may learn.
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A successful machine should be able to capture some structure in the data. When

there are few training examples used to train a complex model, the model is able to

memorise the training set, i.e. learn the correct answer for each training example

with no ability to classify novel examples. This is due to complex models having too

large a capacity, or too many trainable parameters. The idea is that these trainable

parameters are able to store information so that models with more trainable param-

eters are able to store more information. When the number of training examples

increases, it becomes increasingly difficult for the model to learn a spurious rule and

furthermore, for any test point, it becomes more likely that there will be a training

example which is closely related. With a larger training set, there are relatively fewer

accidental regularities, and thus the model will be forced to learn the true underly-

ing structure in the data. This is the basis for adding more training examples to a

complex model in order to improve the generalisation error, with possibly increasing

the training error. This is known as decreasing the variance of a machine learning

model.

With most applications, it is not possible to increase the number of data points,

especially in medical imaging where data sets may be relatively small. However,

we may create more data through augmentation. It may be reasonably straightfor-

ward, in classification tasks, to augment datasets. In these applications, we generate

new (x, y) pairs through the transformation of the x inputs in the training set. Imag-

ing data is considered to be high dimensional with multiple elements of disparity,

most of which may be simply replicated. Wang et al. (2019a) claimed that “data aug-

mentation is more important than model architectures for retinal vessel segmenta-

tion.” Their experiments showed how simple U-Net models might outperform state-

of-the-art complex architectures through effective augmentation regimes. A major

finding was the extreme effect that image patch sampling at numerous orientation

angles would have on the generalisation error. Common data augmentation oper-

ations include shifts, rotation and scaling images. With segmentation algorithms,

it is essential that if these transformations are undertaken on the inputs, they must

be done on the outputs as the gold standard segmentation will change with shift

and rotation of the input image. The injection of noise into training images has also
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proven to increase the performance of vessel segmentation (Shorten and Khoshgof-

taar, 2019). When comparing varying learning algorithms or deep learning architec-

tures, it is thus essential to take into account data augmentation. Often this is not the

case as state-of-the-art results shown in papers may be achieved through thorough

data pre-processing and augmentation rather than the carefully curated models. To

accurately compare models, controlled experiments must be performed.

A.2.5 Regularisation

Along with techniques to increase the dataset size, researchers have explored meth-

ods which attempt to decrease the capacity of their models. Regularisation has been

defined as “any modification we make to a learning algorithm that is intended to

reduce its generalisation error but not its training error” (Goodfellow, Bengio, and

Courville, 2016). Countless forms of regularisation techniques exist in the hand-

book of a deep learning practitioner. Furthermore, a major effort has been placed on

the development of novel regularisation strategies in the literature. Regularisation

strategies in deep learning work by trading an increase in bias for a decrease in vari-

ance. The most effective regularisers aim to profit from the bias-variance trad-off, by

diminishing the variance substantially without much, if any, increase in bias. Con-

trolling the capacity of a model does not merely entail building a model with the

perfect number of learnable parameters, rather best-performing learning machines

are large, yet suitably regularised.

Developed by Caruana (1997), multitask learning has played an important role in

numerous deep learning tasks. The intuition is that when portions of learning mod-

els are distributed amongst various tasks, those portions are forced towards appro-

priate values, allowing better generalisation on unseen data. In this problem class,

the learnt model is split into portions with their accompanying parameters. The first

of which is task-specific, while the others are generic. The improved generalisation

error will only materialise in problems where assumptions about the statistical re-

lationships between tasks hold. Multitask learning has recently transpired in vessel

segmentation tasks (Ma et al., 2019) with propositions to segment thin and thick ves-

sels as separate tasks or vessels, arteries, and veins (Ma et al., 2019).
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Learning machines which contain ample capacity will continuously decrease the

training error towards zero over time. However, after a certain point, the valida-

tion error will not continue to decrease accordingly. Rather the validation error may

begin to rise. This is a common consequence of over-fitting. Thus, by returning to

this point after the training has completed and saving the model weights where the

validation error was the lowest, will produce a better machine. This is one of the

most commonly used forms of regularisation in the deep learning literature, known

as early stopping. Early stopping, however, does come with costs of evaluating the

validation error continuously after every epoch. Preferably, this is done separately

from the main GPU used in training. The advantages of early stopping lie in its sim-

plicity with no change needed to the cost function or constraints on the parameters.

It is common practice to utilise early stopping in conjunction with other regulari-

sation techniques. It is easily seen from analysing training curves and with a little

intuition, how early stopping will lead to better generalisation; however, (Bishop,

1995) shows how early stopping is analogous to L2 regularisation.

First introduced in 2012 (Hinton et al., 2012) and formally defined in 2014 (Sri-

vastava et al., 2014), dropout has been critical in preventing state-of-the-art methods

from over-fitting (Krizhevsky, Sutskever, and Hinton, 2012). Dropout is established

as a powerful means to achieving model aggregation unaccompanied by the sig-

nificant price of creating numerous models. Specifically, this technique trains this

ensemble of sub-models which are created through the removal of neurons with a

certain probability whenever the model is presented with a new batch of training

data. These neurons are effectively discarded from the network by multiplying their

value by zero.

Dropout aims to approximate the operation of bootstrap aggregation (bagging)

(Breiman, 1996), through the use of multitudes of neural sub-networks. It is com-

mon practice to include an input unit with 0.8 probability, and a hidden unit with

0.5 probability. Dropout approximates bagging as it is still dissimilar. In bagging, it

is required that all the models be independent of each other while in dropout, the

models have parameters in common. Srivastava et al. (2014) described the purpose

of dropout to eliminate or significantly reduce complex co-adaptions between neurons.
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FIGURE A.5: A graphical representation of dropout. [Source: (Srivas-
tava et al., 2014)]

This occurrence emerges when different neurons in the same layer of a network de-

pend on each other’s results. In this scenario, few neurons recognise meaningful

information while the others “piggy-back” and would not contribute if their reliable

counterparts were removed from the network. Dropout thus enforces each neuron

to be robust on its own. Interestingly, Srivastava et al. (2014) cited sexual reproduc-

tion and survival of the fittest as an inspiration to dropout. In reproduction, roughly

half of the genes from both the male and the female are not present in the offspring.

This forces robust genes to be selected as if those which are present are not robust

and depend on those which are not, the offspring will not survive. This thought pro-

cess can be extended to models which include dropout: the final neurons are robust,

no matter what other neurons are present in the current model. Figure A.5 presents

the difference between a fully-connected network and one which applies dropout.

Further interpretations which account for the model improvement when using

dropout are terms of and model averaging ensemble methods. In one layer of a stan-

dard feed-forward network which incorporates dropout with 0.5 probability, there

are 2N different sub-networks known as “thinned networks” (Srivastava et al., 2014).

When a batch is presented to the model, a single thinned network is trained. In the

testing phase, all the neurons are present in the network as dropout is abandoned.

The weights of these are, however, scaled by a factor of 0.5. Thus, the resulting

model is an approximation to the average of the 2N thinned networks. Srivastava

et al. (2014) revealed how dropout might be more successful than other regularisa-

tion techniques, such as sparse activity regularisation and weight decay. A major

advantage of dropout is its computational efficiency. Its computational cost is linear
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in the number of training examples (O(n)).
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Appendix B

Code

B.1 Pre-processing

B.1.1 Patch extraction

"""

Random p a t c h e x t r a c t i o n f o r t r a i n i n g

"""

import csv

import os

import u r l l i b . request

import z i p f i l e

from random import randint

from s h u t i l import c o p y f i l e

from PIL import Image

from tqdm import tqdm

import numpy as np

from u t i l import c r e a t e _ d i r _ i f _ n o t _ e x i s t

def crea te_patch ( image_path , gt_path , patch_dir , patch_size , patch_per_image , i n s i d e =True ) :

# C r e a t e d i r s

g t _ d i r = patch_dir + "_GT"

image_dir = patch_dir

c r e a t e _ d i r _ i f _ n o t _ e x i s t ( g t _ d i r )

c r e a t e _ d i r _ i f _ n o t _ e x i s t ( image_dir )

c r e a t e _ d i r _ i f _ n o t _ e x i s t ( " random " )

# I t e r a t e th rough f i l e s t o s p l i t and group them

i m a g e _ f i l e s = os . l i s t d i r ( image_path )

print ( len ( i m a g e _ f i l e s ) , " s l i d e images found " )

i t e r _ t o t = 0

for i m a g e _ f i l e in tqdm ( image_f i l es , desc=" S p l i t t i n g images " ) :

i f " DS_Store " not in i m a g e _ f i l e :

image = Image . open ( image_path + "/" + i m a g e _ f i l e )

image_np = np . asarray ( image )

# p r i n t ( image_np . s h a p e )

gt = Image . open ( gt_path + "/" + i m a g e _ f i l e [ :−3] + ’png ’ )

gt_np = np . asarray ( gt )

# p r i n t ( gt_np . s h a p e )

gt_np = np . reshape ( gt_np , ( gt_np . shape [ 0 ] , gt_np . shape [ 1 ] , 1 ) )

# p r i n t ( gt_np . s h a p e )
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width , height = image . s i z e

save_dir_image = image_dir

save_dir_gt = g t _ d i r

k = 0

patches = [ ]

patches_gt = [ ]

while k < patch_per_image :

x_center = randint (0 + i n t ( pa tch_s ize / 2 ) , width − i n t ( pa tch_s ize / 2 ) )

# p r i n t " x _ c e n t e r " + s t r ( x _ c e n t e r )

y_center = randint (0 + i n t ( pa tch_s ize / 2 ) , height − i n t ( pa tch_s ize / 2 ) )

# p r i n t " y _ c e n t e r " + s t r ( y _ c e n t e r )

# c h e c k whe the r t h e p a t c h i s f u l l y c o n t a i n e d in t h e FOV

i f i n s i d e == True :

i f is_patch_inside_FOV ( x_center , y_center , img_w , img_h , patch_h ) == Fa lse :

continue

patch = image_np [ x_center − i n t ( pa tch_s ize / 2 ) : x_center + i n t ( pa tch_s ize / 2 ) ,

y_center − i n t ( pa tch_s ize / 2 ) : y_center + i n t ( pa tch_s ize / 2 ) ,

: ]

patch_mask = gt_np [ x_center − i n t ( pa tch_s ize / 2 ) : x_center + i n t ( pa tch_s ize / 2 ) ,

y_center − i n t ( pa tch_s ize / 2 ) : y_center + i n t ( pa tch_s ize / 2 ) ,

: ]

patches . append ( patch )

patches_gt . append ( patch_mask )

box = ( x_center − i n t ( pa tch_s ize / 2 ) , y_center − i n t ( pa tch_s ize / 2 ) ,

x_center + i n t ( pa tch_s ize / 2 ) , y_center + i n t ( pa tch_s ize / 2 ) )

cropped_data = image . crop ( box )

cropped_data_gt = gt . crop ( box )

cropped_image = Image . new( ’RGB ’ , ( patch_size , pa tch_s ize ) , 255)

cropped_image . paste ( cropped_data )

cropped_image_gt = Image . new( ’RGB ’ , ( patch_size , pa tch_s ize ) , 255)

cropped_image_gt . paste ( cropped_data_gt )

i t e r _ t o t += 1 # t o t a l

k += 1 # p e r f u l l _ i m g

cropped_image . save ( save_dir_image + "/" + s t r ( i t e r _ t o t ) . z f i l l ( 5 ) + " . png " )

cropped_image_gt . save ( save_dir_gt + "/" + s t r ( i t e r _ t o t ) . z f i l l ( 5 ) + " . png " )

print ( ’ Created ’ , i t e r _ t o t , ’ s p l i t images ’ )

# c h e c k i f t h e p a t c h i s f u l l y c o n t a i n e d in t h e FOV

def is_patch_inside_FOV ( x , y , img_w , img_h , patch_h ) :

x_ = x − i n t ( img_w / 2) # o r i g i n ( 0 , 0 ) s h i f t e d t o image c e n t e r

y_ = y − i n t ( img_h / 2) # o r i g i n ( 0 , 0 ) s h i f t e d t o image c e n t e r

R_inside = 270 − i n t ( patch_h ∗ np . s q r t ( 2 . 0 ) / 2 . 0 )

# r a d i u s i s 270 ( from DRIVE db d o c s ) , minus t h e p a t c h d i a g o n a l

# ( assumed i t i s a s q u a r e # t h i s i s t h e l i m i t t o c o n t a i n t h e f u l l

# p a t c h in t h e FOV

radius = np . s q r t ( ( x_ ∗ x_ ) + ( y_ ∗ y_ ) )

i f radius < R_inside :

return True

e lse :

return Fa lse
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B.1.2 CLAHE

# f o r us ing Clahe

import cv2

image = cv2 . imread ( image_path )

GT = cv2 . imread ( GT_path )

# image

lab = cv2 . cvtColor ( image , cv2 .COLOR_BGR2LAB)

lab_planes = cv2 . s p l i t ( lab )

c lahe = cv2 . createCLAHE ( c l i p L i m i t = 2 . 0 , t i l e G r i d S i z e =(10 , 1 0 ) )

lab_planes [ 0 ] = c lahe . apply ( lab_planes [ 0 ] )

lab = cv2 . merge ( lab_planes )

image = cv2 . cvtColor ( lab , cv2 .COLOR_LAB2BGR)

# GT

lab = cv2 . cvtColor (GT, cv2 .COLOR_BGR2LAB)

lab_planes = cv2 . s p l i t ( lab )

c lahe = cv2 . createCLAHE ( c l i p L i m i t = 2 . 0 , t i l e G r i d S i z e =(10 , 1 0 ) )

lab_planes [ 0 ] = c lahe . apply ( lab_planes [ 0 ] )

lab = cv2 . merge ( lab_planes )

GT = cv2 . cvtColor ( lab , cv2 .COLOR_LAB2BGR)

B.2 Networks

B.2.1 U-Net parts

c l a s s DoubleConv ( nn . Module ) :

""" ( c o n v o l u t i o n => [BN] => ReLU ) ∗ 2"""

def _ _ i n i t _ _ ( s e l f , in_channels , out_channels , mid_channels=None ) :

super ( ) . _ _ i n i t _ _ ( )

i f not mid_channels :

mid_channels = out_channels

s e l f . double_conv = nn . Sequent ia l (

nn . Conv2d ( in_channels , mid_channels , k e r n e l _ s i z e =3 , padding =1) ,

nn . BatchNorm2d ( mid_channels ) ,

# nn . Dropout2d ( 0 . 5 , i n p l a c e =True ) ,

nn . ReLU( i n p l a c e=True ) ,

nn . Conv2d ( mid_channels , out_channels , k e r n e l _ s i z e =3 , padding =1) ,

nn . BatchNorm2d ( out_channels ) ,

# nn . Dropout2d ( 0 . 5 , i n p l a c e =True ) ,

nn . ReLU( i n p l a c e=True )

)

def forward ( s e l f , x ) :

return s e l f . double_conv ( x )

c l a s s Down( nn . Module ) :

""" Downscal ing with maxpool th en d o u b l e conv """

def _ _ i n i t _ _ ( s e l f , in_channels , out_channels ) :

super ( ) . _ _ i n i t _ _ ( )

s e l f . maxpool_conv = nn . Sequent ia l (

nn . MaxPool2d ( 2 ) ,

DoubleConv ( in_channels , out_channels )

)

def forward ( s e l f , x ) :

return s e l f . maxpool_conv ( x )
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c l a s s Up( nn . Module ) :

""" U p s c a l i n g then d o u b l e conv """

def _ _ i n i t _ _ ( s e l f , in_channels , out_channels , b i l i n e a r =True ) :

super ( ) . _ _ i n i t _ _ ( )

# i f b i l i n e a r , use t h e normal c o n v o l u t i o n s t o r e d u c e t h e number o f c h a n n e l s

i f b i l i n e a r :

s e l f . up = nn . Upsample ( s c a l e _ f a c t o r =2 , mode= ’ b i l i n e a r ’ , a l i g n _ c o r n e r s =True )

s e l f . conv = DoubleConv ( in_channels , out_channels , in_channels // 2)

e lse :

s e l f . up = nn . ConvTranspose2d ( in_channels , in_channels // 2 , k e r n e l _ s i z e =2 , s t r i d e =2)

s e l f . conv = DoubleConv ( in_channels , out_channels )

def forward ( s e l f , x1 , x2 ) :

x1 = s e l f . up ( x1 )

# i n p u t i s CHW

d i f f Y = x2 . s i z e ( ) [ 2 ] − x1 . s i z e ( ) [ 2 ]

d i f f X = x2 . s i z e ( ) [ 3 ] − x1 . s i z e ( ) [ 3 ]

x1 = F . pad ( x1 , [ d i f f X // 2 , d i f f X − d i f f X // 2 ,

d i f f Y // 2 , d i f f Y − d i f f Y // 2 ] )

# i f you have padding i s s u e s , s e e

# h t t p s : / / g i t h u b . com / Ha iyongJ i ang /U−Net−Pytorch−Unstruc tured−Buggy / commit / 0 e 8 5 4 5 0 9 c 2 c e a 8 5 4 e 2 4 7 a 9 c 6 1 5 f 1 7 5 f 7 6 f b b 2 e 3 a

# h t t p s : / / g i t h u b . com / x iaopeng− l i a o / Pytorch−UNet / commit / 8 e b a c 7 0 e 6 3 3 b a c 5 9 f c 2 2 b b 5 1 9 5 e 5 1 3 d 5 8 3 2 f b 3 b d

x = torch . c a t ( [ x2 , x1 ] , dim=1)

return s e l f . conv ( x )

c l a s s OutConv ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , in_channels , out_channels ) :

super ( OutConv , s e l f ) . _ _ i n i t _ _ ( )

s e l f . conv = nn . Conv2d ( in_channels , out_channels , k e r n e l _ s i z e =1)

def forward ( s e l f , x ) :

return s e l f . conv ( x )

c l a s s conv_block ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , ch_in , ch_out ) :

super ( conv_block , s e l f ) . _ _ i n i t _ _ ( )

s e l f . conv = nn . Sequent ia l (

nn . Conv2d ( ch_in , ch_out , k e r n e l _ s i z e =3 , s t r i d e =1 , padding =1 , b i a s=True ) ,

nn . BatchNorm2d ( ch_out ) ,

nn . ReLU( i n p l a c e=True ) ,

nn . Conv2d ( ch_out , ch_out , k e r n e l _ s i z e =3 , s t r i d e =1 , padding =1 , b i a s=True ) ,

nn . BatchNorm2d ( ch_out ) ,

# nn . Dropout2d ( 0 . 5 , i n p l a c e =True ) ,

nn . ReLU( i n p l a c e=True )

)

def forward ( s e l f , x ) :

x = s e l f . conv ( x )

return x

c l a s s up_conv ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , ch_in , ch_out ) :

super ( up_conv , s e l f ) . _ _ i n i t _ _ ( )

s e l f . up = nn . Sequent ia l (

nn . Upsample ( s c a l e _ f a c t o r =2) ,

nn . Conv2d ( ch_in , ch_out , k e r n e l _ s i z e =3 , s t r i d e =1 , padding =1 , b i a s=True ) ,

nn . BatchNorm2d ( ch_out ) ,

nn . ReLU( i n p l a c e=True )

)
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def forward ( s e l f , x ) :

x = s e l f . up ( x )

return x

c l a s s s ingle_conv ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , ch_in , ch_out ) :

super ( s ingle_conv , s e l f ) . _ _ i n i t _ _ ( )

s e l f . conv = nn . Sequent ia l (

nn . Conv2d ( ch_in , ch_out , k e r n e l _ s i z e =3 , s t r i d e =1 , padding =1 , b i a s=True ) ,

nn . BatchNorm2d ( ch_out ) ,

# nn . Dropout2d ( 0 . 5 ) ,

nn . ReLU( i n p l a c e=True )

)

def forward ( s e l f , x ) :

x = s e l f . conv ( x )

return x

B.2.2 U-Net

c l a s s UNet ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , n_channels , n_c lasses , out_channels = 3 2 ) :

super ( UNet , s e l f ) . _ _ i n i t _ _ ( )

s e l f . n_channels = n_channels

s e l f . n _ c l a s s e s = n _ c l a s s e s

b i l i n e a r = Fa l se

s e l f . inc = DoubleConv ( n_channels , out_channels )

s e l f . down1 = Down( out_channels , out_channels ∗ 2)

s e l f . down2 = Down( out_channels ∗ 2 , out_channels ∗ 4)

s e l f . down3 = Down( out_channels ∗ 4 , out_channels ∗ 8)

f a c t o r = 2 i f b i l i n e a r e lse 1

s e l f . down4 = Down( out_channels ∗ 8 , out_channels ∗ 16 // f a c t o r )

s e l f . up1 = Up( out_channels ∗ 16 , out_channels ∗ 8 // f a c t o r , b i l i n e a r )

s e l f . up2 = Up( out_channels ∗ 8 , out_channels ∗ 4 // f a c t o r , b i l i n e a r )

s e l f . up3 = Up( out_channels ∗ 4 , out_channels ∗ 2 // f a c t o r , b i l i n e a r )

s e l f . up4 = Up( out_channels ∗ 2 , out_channels , b i l i n e a r )

s e l f . outc = OutConv ( out_channels , n _ c l a s s e s )

def forward ( s e l f , x ) :

x1 = s e l f . inc ( x )

x2 = s e l f . down1( x1 )

x3 = s e l f . down2( x2 )

x4 = s e l f . down3( x3 )

x5 = s e l f . down4( x4 )

x = s e l f . up1 ( x5 , x4 )

x = s e l f . up2 ( x , x3 )

x = s e l f . up3 ( x , x2 )

x = s e l f . up4 ( x , x1 )

l o g i t s = s e l f . outc ( x )

return l o g i t s

B.2.3 Attention parts

c l a s s Attent ion_block ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , F_g , F_l , F_ in t ) :

super ( Attent ion_block , s e l f ) . _ _ i n i t _ _ ( )

s e l f .W_g = nn . Sequent ia l (
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nn . Conv2d ( F_g , F_int , k e r n e l _ s i z e =1 , s t r i d e =1 , padding =0 , b i a s=True ) ,

nn . BatchNorm2d ( F_ in t )

)

s e l f .W_x = nn . Sequent ia l (

nn . Conv2d ( F_l , F_int , k e r n e l _ s i z e =1 , s t r i d e =1 , padding =0 , b i a s=True ) ,

nn . BatchNorm2d ( F_ in t )

)

s e l f . ps i = nn . Sequent ia l (

nn . Conv2d ( F_int , 1 , k e r n e l _ s i z e =1 , s t r i d e =1 , padding =0 , b i a s=True ) ,

nn . BatchNorm2d ( 1 ) ,

nn . Sigmoid ( )

)

s e l f . r e l u = nn . ReLU( i n p l a c e=True )

def forward ( s e l f , g , x ) :

g1 = s e l f .W_g( g )

x1 = s e l f .W_x( x )

ps i = s e l f . r e l u ( g1 + x1 )

ps i = s e l f . ps i ( ps i )

return x ∗ ps i

B.2.4 Attention U-Net

c l a s s AttU_Net ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , img_ch =3 , output_ch = 1 ) :

super ( AttU_Net , s e l f ) . _ _ i n i t _ _ ( )

s e l f . Maxpool = nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2)

s e l f . Conv1 = conv_block ( ch_in=img_ch , ch_out =64)

s e l f . Conv2 = conv_block ( ch_in =64 , ch_out =128)

s e l f . Conv3 = conv_block ( ch_in =128 , ch_out =256)

s e l f . Conv4 = conv_block ( ch_in =256 , ch_out =512)

s e l f . Conv5 = conv_block ( ch_in =512 , ch_out =1024)

s e l f . Up5 = up_conv ( ch_in =1024 , ch_out =512)

s e l f . Att5 = Attent ion_block ( F_g =512 , F_l =512 , F_ in t =256)

s e l f . Up_conv5 = conv_block ( ch_in =1024 , ch_out =512)

s e l f . Up4 = up_conv ( ch_in =512 , ch_out =256)

s e l f . Att4 = Attent ion_block ( F_g =256 , F_l =256 , F_ in t =128)

s e l f . Up_conv4 = conv_block ( ch_in =512 , ch_out =256)

s e l f . Up3 = up_conv ( ch_in =256 , ch_out =128)

s e l f . Att3 = Attent ion_block ( F_g =128 , F_l =128 , F_ in t =64)

s e l f . Up_conv3 = conv_block ( ch_in =256 , ch_out =128)

s e l f . Up2 = up_conv ( ch_in =128 , ch_out =64)

s e l f . Att2 = Attent ion_block ( F_g =64 , F_l =64 , F_ in t =32)

s e l f . Up_conv2 = conv_block ( ch_in =128 , ch_out =64)

s e l f . Conv_1x1 = nn . Conv2d ( 6 4 , output_ch , k e r n e l _ s i z e =1 , s t r i d e =1 , padding =0)

def forward ( s e l f , x ) :

# e n c o d i n g pa th

x1 = s e l f . Conv1 ( x )

x2 = s e l f . Maxpool ( x1 )

x2 = s e l f . Conv2 ( x2 )
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x3 = s e l f . Maxpool ( x2 )

x3 = s e l f . Conv3 ( x3 )

x4 = s e l f . Maxpool ( x3 )

x4 = s e l f . Conv4 ( x4 )

x5 = s e l f . Maxpool ( x4 )

x5 = s e l f . Conv5 ( x5 )

# d e c o d i n g + c o n c a t pa th

d5 = s e l f . Up5( x5 )

x4 = s e l f . Att5 ( g=d5 , x=x4 )

d5 = torch . c a t ( ( x4 , d5 ) , dim=1)

d5 = s e l f . Up_conv5 ( d5 )

d4 = s e l f . Up4( d5 )

x3 = s e l f . Att4 ( g=d4 , x=x3 )

d4 = torch . c a t ( ( x3 , d4 ) , dim=1)

d4 = s e l f . Up_conv4 ( d4 )

d3 = s e l f . Up3( d4 )

x2 = s e l f . Att3 ( g=d3 , x=x2 )

d3 = torch . c a t ( ( x2 , d3 ) , dim=1)

d3 = s e l f . Up_conv3 ( d3 )

d2 = s e l f . Up2( d3 )

x1 = s e l f . Att2 ( g=d2 , x=x1 )

d2 = torch . c a t ( ( x1 , d2 ) , dim=1)

d2 = s e l f . Up_conv2 ( d2 )

d1 = s e l f . Conv_1x1 ( d2 )

return d1

B.2.5 Iternet

c l a s s UNetForIter ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , n_channels , n_c lasses , out_channels = 3 2 ) :

super ( UNetForIter , s e l f ) . _ _ i n i t _ _ ( )

s e l f . n_channels = n_channels

s e l f . n _ c l a s s e s = n _ c l a s s e s

b i l i n e a r = Fa l se

s e l f . inc = DoubleConv ( n_channels , out_channels )

s e l f . down1 = Down( out_channels , out_channels ∗ 2)

s e l f . down2 = Down( out_channels ∗ 2 , out_channels ∗ 4)

s e l f . down3 = Down( out_channels ∗ 4 , out_channels ∗ 8)

f a c t o r = 2 i f b i l i n e a r e lse 1

s e l f . down4 = Down( out_channels ∗ 8 , out_channels ∗ 16 // f a c t o r )

s e l f . up1 = Up( out_channels ∗ 16 , out_channels ∗ 8 // f a c t o r , b i l i n e a r )

s e l f . up2 = Up( out_channels ∗ 8 , out_channels ∗ 4 // f a c t o r , b i l i n e a r )

s e l f . up3 = Up( out_channels ∗ 4 , out_channels ∗ 2 // f a c t o r , b i l i n e a r )

s e l f . up4 = Up( out_channels ∗ 2 , out_channels , b i l i n e a r )

s e l f . outc = OutConv ( out_channels , n _ c l a s s e s )

def forward ( s e l f , x ) :

x1 = s e l f . inc ( x )

x2 = s e l f . down1( x1 )

x3 = s e l f . down2( x2 )

x4 = s e l f . down3( x3 )

x5 = s e l f . down4( x4 )

x = s e l f . up1 ( x5 , x4 )



Appendix B. Code 104

x = s e l f . up2 ( x , x3 )

x = s e l f . up3 ( x , x2 )

x = s e l f . up4 ( x , x1 )

l o g i t s = s e l f . outc ( x )

return x1 , x , l o g i t s

c l a s s MiniUNet ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , n_channels , n_c lasses , out_channels = 3 2 ) :

super ( MiniUNet , s e l f ) . _ _ i n i t _ _ ( )

s e l f . n_channels = n_channels

s e l f . n _ c l a s s e s = n _ c l a s s e s

b i l i n e a r = Fa l se

s e l f . inc = DoubleConv ( n_channels , out_channels )

s e l f . down1 = Down( out_channels , out_channels ∗ 2)

s e l f . down2 = Down( out_channels ∗ 2 , out_channels ∗ 4)

s e l f . down3 = Down( out_channels ∗ 4 , out_channels ∗ 8)

s e l f . up1 = Up( out_channels ∗ 8 , out_channels ∗ 4 , b i l i n e a r )

s e l f . up2 = Up( out_channels ∗ 4 , out_channels ∗ 2 , b i l i n e a r )

s e l f . up3 = Up( out_channels ∗ 2 , out_channels , b i l i n e a r )

s e l f . outc = OutConv ( out_channels , n _ c l a s s e s )

def forward ( s e l f , x ) :

x1 = s e l f . inc ( x )

x2 = s e l f . down1( x1 )

x3 = s e l f . down2( x2 )

x4 = s e l f . down3( x3 )

x = s e l f . up1 ( x4 , x3 )

x = s e l f . up2 ( x , x2 )

x = s e l f . up3 ( x , x1 )

l o g i t s = s e l f . outc ( x )

return x1 , x , l o g i t s

c l a s s I t e r n e t ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , n_channels , n_c lasses , out_channels =32 , i t e r a t i o n s = 3 ) :

super ( I t e r n e t , s e l f ) . _ _ i n i t _ _ ( )

s e l f . n_channels = n_channels

s e l f . n _ c l a s s e s = n _ c l a s s e s

s e l f . i t e r a t i o n s = i t e r a t i o n s

# d e f i n e t h e network UNet l a y e r

s e l f . model_unet = UNetForIter ( n_channels=n_channels ,

n _ c l a s s e s =n_c lasses , out_channels=out_channels )

# d e f i n e t h e network MiniUNet l a y e r s

s e l f . model_miniunet = ModuleList ( MiniUNet (

n_channels=out_channels ∗ 2 , n _ c l a s s e s =n_c lasses , out_channels=out_channels ) for i in range ( i t e r a t i o n s ) )

def forward ( s e l f , x ) :

x1 , x2 , l o g i t s = s e l f . model_unet ( x )

for i in range ( s e l f . i t e r a t i o n s ) :

x = torch . c a t ( [ x1 , x2 ] , dim=1)

_ , x2 , l o g i t s = s e l f . model_miniunet [ i ] ( x )

return l o g i t s

B.2.6 Attention Iternet

c l a s s AttUNetForIter ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , img_ch =3 , output_ch = 1 ) :

super ( AttUNetForIter , s e l f ) . _ _ i n i t _ _ ( )
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s e l f . Maxpool = nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2)

s e l f . Conv1 = conv_block ( ch_in=img_ch , ch_out =32)

s e l f . Conv2 = conv_block ( ch_in =32 , ch_out =64)

s e l f . Conv3 = conv_block ( ch_in =64 , ch_out =128)

s e l f . Conv4 = conv_block ( ch_in =128 , ch_out =256)

s e l f . Conv5 = conv_block ( ch_in =256 , ch_out =512)

s e l f . Up5 = up_conv ( ch_in =512 , ch_out =256)

s e l f . Att5 = Attent ion_block ( F_g =256 , F_l =256 , F_ in t =128)

s e l f . Up_conv5 = conv_block ( ch_in =512 , ch_out =256)

s e l f . Up4 = up_conv ( ch_in =256 , ch_out =128)

s e l f . Att4 = Attent ion_block ( F_g =128 , F_l =128 , F_ in t =64)

s e l f . Up_conv4 = conv_block ( ch_in =256 , ch_out =128)

s e l f . Up3 = up_conv ( ch_in =128 , ch_out =64)

s e l f . Att3 = Attent ion_block ( F_g =64 , F_l =64 , F_ in t =32)

s e l f . Up_conv3 = conv_block ( ch_in =128 , ch_out =64)

s e l f . Up2 = up_conv ( ch_in =64 , ch_out =32)

s e l f . Att2 = Attent ion_block ( F_g =32 , F_l =32 , F_ in t =16)

s e l f . Up_conv2 = conv_block ( ch_in =64 , ch_out =32)

# s e l f . Up_conv1 = c o n v _ b l o c k ( c h _ i n =64 , ch_out =32)

s e l f . Conv_1x1 = nn . Conv2d ( 3 2 , output_ch , k e r n e l _ s i z e =1 , s t r i d e =1 , padding =0)

def forward ( s e l f , x ) :

# e n c o d i n g pa th

x1 = s e l f . Conv1 ( x )

x2 = s e l f . Maxpool ( x1 )

x2 = s e l f . Conv2 ( x2 )

x3 = s e l f . Maxpool ( x2 )

x3 = s e l f . Conv3 ( x3 )

x4 = s e l f . Maxpool ( x3 )

x4 = s e l f . Conv4 ( x4 )

x5 = s e l f . Maxpool ( x4 )

x5 = s e l f . Conv5 ( x5 )

# d e c o d i n g + c o n c a t pa th

d5 = s e l f . Up5( x5 )

x4 = s e l f . Att5 ( g=d5 , x=x4 )

d5 = torch . c a t ( ( x4 , d5 ) , dim=1)

d5 = s e l f . Up_conv5 ( d5 )

d4 = s e l f . Up4( d5 )

x3 = s e l f . Att4 ( g=d4 , x=x3 )

d4 = torch . c a t ( ( x3 , d4 ) , dim=1)

d4 = s e l f . Up_conv4 ( d4 )

d3 = s e l f . Up3( d4 )

x2 = s e l f . Att3 ( g=d3 , x=x2 )

d3 = torch . c a t ( ( x2 , d3 ) , dim=1)

d3 = s e l f . Up_conv3 ( d3 )

d2 = s e l f . Up2( d3 )

x1 = s e l f . Att2 ( g=d2 , x=x1 )

d2 = torch . c a t ( ( x1 , d2 ) , dim=1)

d2 = s e l f . Up_conv2 ( d2 )

# d2 = s e l f . Up_conv1 ( d2 )
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d1 = s e l f . Conv_1x1 ( d2 )

return x1 , d2 , d1

c l a s s AttUI ternet ( nn . Module ) :

def _ _ i n i t _ _ ( s e l f , n_channels , n_c lasses , out_channels =32 , i t e r a t i o n s = 3 ) :

super ( AttUIternet , s e l f ) . _ _ i n i t _ _ ( )

s e l f . n_channels = n_channels

s e l f . n _ c l a s s e s = n _ c l a s s e s

s e l f . i t e r a t i o n s = i t e r a t i o n s

# d e f i n e t h e network UNet l a y e r

s e l f . model_unet = AttUNetForIter ( n_channels , 1 )

# d e f i n e t h e network MiniUNet l a y e r s

s e l f . model_miniunet = ModuleList ( MiniUNet (

n_channels=out_channels ∗ 2 , n _ c l a s s e s =n_c lasses , out_channels=out_channels ) for i in range ( i t e r a t i o n s ) )

def forward ( s e l f , x ) :

x1 , x2 , l o g i t s = s e l f . model_unet ( x )

for i in range ( s e l f . i t e r a t i o n s ) :

x = torch . c a t ( [ x1 , x2 ] , dim=1)

_ , x2 , l o g i t s = s e l f . model_miniunet [ i ] ( x )

return l o g i t s



107

Bibliography

Abbas, Waseem et al. (2019). “Patch-Based Generative Adversarial Network Towards

Retinal Vessel Segmentation”. In: Neural Information Processing. Ed. by Tom Gedeon,

Kok Wai Wong, and Minho Lee. Cham: Springer International Publishing, pp. 49–

56. ISBN: 978-3-030-36808-1.

Afifi, Ashraf et al. (June 2015). “New Region Growing based on Thresholding Tech-

nique Applied to MRI Data”. In: International Journal of Computer Network and

Information Security 7, pp. 61–67. DOI: 10.5815/ijcnis.2015.07.08.

Ahlem, Melouah and Soumaya Layachi (Nov. 2015). “A Novel Automatic Seed Place-

ment Approach for Region Growing segmentation in Mammograms”. In: pp. 1–

5. DOI: 10.1145/2816839.2816892.

Al-Rawi, Mohammed and Huda Karajeh (2007). “Genetic algorithm matched filter

optimization for automated detection of blood vessels from digital retinal im-

ages”. In: Computer Methods and Programs in Biomedicine 87.3, pp. 248 –253. ISSN:

0169-2607. DOI: https://doi.org/10.1016/j.cmpb.2007.05.012. URL: http:

//www.sciencedirect.com/science/article/pii/S0169260707001332.

Ali, Aziah, Wan Mimi Diyana Wan Zaki, and Aini Hussain (2018). “Blood Vessel Seg-

mentation from Color Retinal Images Using K-Means Clustering and 2D Gabor

Wavelet”. In: Applied Physics, System Science and Computers. Ed. by Klimis Ntal-

ianis and Anca Croitoru. Cham: Springer International Publishing, pp. 221–227.

ISBN: 978-3-319-53934-8.

Alom, Md Zahangir et al. (2018). Recurrent Residual Convolutional Neural Network

based on U-Net (R2U-Net) for Medical Image Segmentation. arXiv: 1802.06955 [cs.CV].

Andermatt, Simon, Simon Pezold, and Philippe Cattin (Oct. 2016). “Multi-dimensional

Gated Recurrent Units for the Segmentation of Biomedical 3D-Data”. In: pp. 142–

151. DOI: 10.1007/978-3-319-46976-8_15.

Annunziata, R. et al. (2016). “Leveraging Multiscale Hessian-Based Enhancement

With a Novel Exudate Inpainting Technique for Retinal Vessel Segmentation”.

In: IEEE Journal of Biomedical and Health Informatics 20.4, pp. 1129–1138.

https://doi.org/10.5815/ijcnis.2015.07.08
https://doi.org/10.1145/2816839.2816892
https://doi.org/https://doi.org/10.1016/j.cmpb.2007.05.012
http://www.sciencedirect.com/science/article/pii/S0169260707001332
http://www.sciencedirect.com/science/article/pii/S0169260707001332
https://arxiv.org/abs/1802.06955
https://doi.org/10.1007/978-3-319-46976-8_15


Bibliography 108

Asad, Ahmed, Ahmad Azar, and Aboul Ella Hassanien (Oct. 2014). “A New Heuris-

tic Function of Ant Colony System for Retinal Vessel Segmentation”. In: Interna-

tional Journal of Rough Sets and Data Analysis (IJRSDA) 1, pp. 15–30. DOI: 10.4018/

ijrsda.2014070102.

Aslani, Shahab and Haldun Sarnel (2016). “A new supervised retinal vessel segmen-

tation method based on robust hybrid features”. In: Biomedical Signal Processing

and Control 30, pp. 1 –12. ISSN: 1746-8094. DOI: https://doi.org/10.1016/j.

bspc.2016.05.006. URL: http://www.sciencedirect.com/science/article/

pii/S1746809416300489.

Azzopardi, George and Nicolai Petkov (2013). “A Shape Descriptor Based on Train-

able COSFIRE Filters for the Recognition of Handwritten Digits”. In: Computer

Analysis of Images and Patterns. Ed. by Richard Wilson et al. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 9–16. ISBN: 978-3-642-40246-3.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2014). Neural Machine

Translation by Jointly Learning to Align and Translate. arXiv: 1409.0473 [cs.CL].

Bai, W. et al. (2013). “A Probabilistic Patch-Based Label Fusion Model for Multi-

Atlas Segmentation With Registration Refinement: Application to Cardiac MR

Images”. In: IEEE Transactions on Medical Imaging 32.7, pp. 1302–1315. ISSN: 1558-

254X. DOI: 10.1109/TMI.2013.2256922.

Bai, Wenjia et al. (2019). “Self-Supervised Learning for Cardiac MR Image Segmen-

tation by Anatomical Position Prediction”. In: Medical Image Computing and Com-

puter Assisted Intervention – MICCAI 2019. Ed. by Dinggang Shen et al. Cham:

Springer International Publishing, pp. 541–549. ISBN: 978-3-030-32245-8.

Bhuiyan, A. et al. (2007). “Blood Vessel Segmentation from Color Retinal Images

using Unsupervised Texture Classification”. In: 2007 IEEE International Conference

on Image Processing. Vol. 5, pp. V –521–V –524.

Bilal Khomri Argyrios Christodoulidis, Leila Djerou Mohamed Chaouki Babahenini

Farida Cheriet (2018). “Retinal blood vessel segmentation using the elite-guided

multi-objective artificial bee colony algorithm”. English. In: IET Image Processing

12 (12), 2163–2171(8). ISSN: 1751-9659. URL: https://digital-library.theiet.

org/content/journals/10.1049/iet-ipr.2018.5425.

Bishop, Christopher M. (1995). “Regularization and complexity control in feed-forward

networks”. International Conference on Artificial Neural Networks ICANN’95.

URL: http://publications.aston.ac.uk/id/eprint/524/.

https://doi.org/10.4018/ijrsda.2014070102
https://doi.org/10.4018/ijrsda.2014070102
https://doi.org/https://doi.org/10.1016/j.bspc.2016.05.006
https://doi.org/https://doi.org/10.1016/j.bspc.2016.05.006
http://www.sciencedirect.com/science/article/pii/S1746809416300489
http://www.sciencedirect.com/science/article/pii/S1746809416300489
https://arxiv.org/abs/1409.0473
https://doi.org/10.1109/TMI.2013.2256922
https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2018.5425
https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2018.5425
http://publications.aston.ac.uk/id/eprint/524/


Bibliography 109

Bisong, Ekaba (2019). “Google Colaboratory”. In: Building Machine Learning and Deep

Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners.

Berkeley, CA: Apress, pp. 59–64. ISBN: 978-1-4842-4470-8. DOI: 10.1007/978-1-

4842-4470-8_7. URL: https://doi.org/10.1007/978-1-4842-4470-8_7.

Bradski, G. (2000). “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools.

Breiman, Leo (1996). “Bagging Predictors”. In: Machine Learning 24.2, pp. 123–140.

Bruyninckx, Pieter et al. (2009). “Segmentation of lung vessel trees by global opti-

mization”. In: Medical Imaging 2009: Image Processing. Ed. by Josien P. W. Pluim

and Benoit M. Dawant. Vol. 7259. International Society for Optics and Photonics.

SPIE, pp. 367 –378. DOI: 10.1117/12.811570. URL: https://doi.org/10.1117/

12.811570.

— (Mar. 2010). “Segmentation of liver portal veins by global optimization”. In: Proc

SPIE. DOI: 10.1117/12.843995.

Caruana, Rich (1997). “Multitask Learning”. In: Machine Learning 28.1, pp. 41–75.

Chalakkal, R. J. and W. H. Abdulla (2018). “Improved Vessel Segmentation Using

Curvelet Transform and Line Operators”. In: 2018 Asia-Pacific Signal and Informa-

tion Processing Association Annual Summit and Conference (APSIPA ASC), pp. 2041–

2046.

Chan, T. F. and L. A. Vese (2001). “Active contours without edges”. In: IEEE Transac-

tions on Image Processing 10.2, pp. 266–277.

Charbonnier, Jean-Paul et al. (Nov. 2016). “Improving Airway Segmentation in Com-

puted Tomography using Leak Detection with Convolutional Networks”. In:

Medical Image Analysis 36. DOI: 10.1016/j.media.2016.11.001.

Charbonnier, Jean-Paul et al. (2017). “Improving airway segmentation in computed

tomography using leak detection with convolutional networks”. In: Medical im-

age analysis 36, 52—60. ISSN: 1361-8415. DOI: 10.1016/j.media.2016.11.001.

URL: https://doi.org/10.1016/j.media.2016.11.001.

Chen, Jianxu et al. (2016). Combining Fully Convolutional and Recurrent Neural Net-

works for 3D Biomedical Image Segmentation. arXiv: 1609.01006 [cs.CV].

Cheung, N., T.Y. Wong, and L. Hodgson (Jan. 2009). “Retinal vascular changes as

biomarkers of systemic cardiovascular diseases”. In: pp. 185–220.
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